
Overview of the
art Framework
Chris Green, for the art team.
Common Infrastructure

Software Toolkit
Project Workshop.

24 Jan, 2014.

Users and User needs

2 / 24

User Base

Intensity Frontier experiments:
NOνA (near detector beam data, far detector Q2 2014) and
NOνA-DDT (with limited use of artdaq).
Mu2e (simulation).
Muon g-2 (simulation).
µBooNE (data Q2 2014).
LBNE (planning, simulation).
ArgoNeuT (analysis).

Darkside/ DS50 (data with artdaq, analysis with art).
Toolkits / packages used by multiple experiments:

Nutools.
LArSoft.
artdaq.
IFDH.
artG4.

3 / 24

Needs Met, Problems Solved

Parallel multi-package build system – MRB (Muon g-2,
LArSoft).

OS support: SLF5 (and related), SLF6 (and related), OS X
Mountain Lion.

Framework as external binary product for experiments
with little permanent programming expertise.

Framework imposes as few constraints as possible on
experiment’s build system.

Packaging and delivery of binary external products
(compiler, Geant4, ROOT, GENIE, etc.) for development
in a controlled environment. System privileges not
required.

4 / 24

Needs Met, Problems Solved
Framework for configurable modular simulation,
reconstruction and analysis, with:

ROOT-readable output files.
Nested, experiment-defined hierarchy of scope for
processing and data products (Run, SubRun, Event).
Runtime configuration and loading of modules and
services.
Representation of related data "products" and collections of
same for communication between modules.
Provenance and other metadata for data consistency and
reproducibility checks.
Ability to run in grid environments.
Interface to SAM file lookup, retrieval and data
mechanisms.
Ability to interface to (or form the basis of) experiments’
event display.
Data integrity assured by being immutable once placed in
the event.

5 / 24

art Components and Features

6 / 24

High-Level Components
Build and delivery.

Delivery system is "relocatable UPS." CVMFS being
developed, but not compulsory for experiments.
CMake-based build system supports parallel builds. Used
for all our packages, being adopted by some experiments.
Distinct “install” step generates relocatable UPS products.
Not necessary to use art: Mu2e uses SCONS, LBNE uses
worch, other experiments or toolkit / package providers
use SoftRelTools, CMake, or MRB.
MRB allows simultaneous local builds of related packages
against centrally-installed dependencies (cf “test
releases”), while maintaining consistency of build
(package ≡ repository ≡ relocatable UPS product ≡
smallest versioned unit).
All art-suite packages are built closed-link
(--no-undefined) and warning-free (--Werror) with
no circular dpendencies.

7 / 24

High-Level Components
art suite.
Extensively reorganized after fork from FWCore circa March
2010 for dependency relationships and new features.

art.
Main framework.

messagefacility.
Event logging system, long history. Two different variants
(standard, NOνA-online).

fhicl-cpp.
FHiCL is a configuration language designed to meet the
requirements of intensity frontier experiments. Many
discussions with stakeholders over the form and function
of the language. Other bindings available.

cetlib and cpp0x utility libraries.

8 / 24

Infrastructure and modularity
Main application, including command-line option
handling. Plugin use and workflow specified at runtime
via FHiCL configuration read from file and post-processed
according to command-line options.

#include "services.fcl"
process_name: DEVEL
source: { module_type: RootInput
fileNames: ["a.root", "b.root"]

}
services: @local::services
services.user.ExptService: { par1: inf par2: 3 }
physics: {
analyzers: { a1: {

module_type: EMPerf
useParticleID: false
SelectEvents: { SelectEvents: ["tp"] } }

} 9 / 24

Infrastructure and modularity

filters: { ps1: {
module_type: BlockingPrescaler
blockSize: 3 stepSize: 200
offset: 27 }

}
tp: ["ps1"]
ep: ["a1", "o1", "o2"]

}
outputs: {
o1: { module_type: RootOutput

fileName: "raw.root" }
o2: { module_type: RootOutput

fileName: "pre.root"
SelectEvents: { SelectEvents: ["tp"] } }

}

10 / 24

Infrastructure and modularity
services.fcl
BEGIN_PROLOG
services: {
user: { # User-defined services here.

}
Timing: { }
SimpleMemoryChecker: { }

}
END_PROLOG

Plugin generation and loading (product dictionaries,
modules, services) via naming conventions
(libXXX_YYY_module.so, libXXX_ZZZ_service.so,
libAA_BBB_dict.so, etc.)—easier on build system.
Modules: producers, filters, analyzers, sources, outputs.
Intra-module parallelism via Intel TBB.

11 / 24

Infrastructure and modularity
Producers and filters are restricted to trigger paths;
analyzers and outputs are restricted to end paths.
Disposition of defined paths is automatic.
Services:

Open plugin / callback system used for I/O virtualization
and geometry-related issues, also random number
generation and other “non-physics” tasks.
Service interfaces and interface implementations;
corresponding changes to service declaration and
management system.
Services specified as LEGACY, GLOBAL or LOCAL in
preparation for parallel operation.
Service callback mechanism simplified significantly and
SIGC++ dependency removed via use of C++2011 features
(variadic templates). Local and global signals in
perparation for parallel operation.

Support for limited reconfiguration of modules and paths
to support event display and DAQ applications.

12 / 24

Data Model and I/O

Inputs / Outputs; ROOT file I/O; stream input, limited
network streaming output of ROOT data.

Class template for input sources.

User-defined data products saved in Event, etc.. Support
for non-persistable data products.

References (Ptr, View) to items in collections. Limited
support for polymorphism (Ptr<Base>). Compact
persistent representation (PtrVector) of sequences of
Ptr into the same collection. Conversion from Ptr<T> to
Ptr<U>.

Reorganized product-finding (Group,
EDProductGetter, etc.) for greater efficiency,
encapsulation and to support other requested features
(Assns).

13 / 24

Data Model and I/O

Bi-directional associations between items in collections
(Assns, FindOne, FindMany, etc.).

Product mixing (overlaid events). Data model
complexities hidden from mix module authors by use of a
module template and helpers.

In-file SQLite DB for user and art metadata.

ParameterSet (from FHiCL), stored in embedded
SQLite database.

14 / 24

Other components and features

Relying on and leveraging C++2011:
art::ValidHandle, std::shared_ptr,
std::unique_ptr and move semantics (including
addition of products to the event), variadic templates for
signals / slots, static_assert where appropriate.

Histogramming service for modules (separate from event
data).

Ability to interface to event display, with random access to
events.

15 / 24

Future work to meet user
needs

16 / 24

Plans

New OS support: OS X Mavericks, SLF7 (and related).

New compiler support: Intel compiler suite, LLVM /
Clang.

Cross-compiling architecture support: ARM64, Intel Mic.

Extend run and subrun processing features to meet
experiment needs, including necessary changes to run /
subrun concepts.

Reduce "shape" restrictions on merging of data files where
possible and appropriate.

User-managed metadata and necessary improvements to
metadata DB.

Migrate metadata to SQLite DB to increase flexibility and
simplify product access.

17 / 24

Plans

Split processing of large events due to memory constraints.

Upgrade EventProcessor and file modes to be more
flexible amenable to (e.g.) DAQ use cases.

Move toward pull rather than push output file open /
close.

Ptr into collections in subrun, and run-level products, and
necessary improvements to metadata and product-finding.

Work toward multi-schedule processing and thread safety.

Streaming output.

Migrate to C++2014.

18 / 24

Backup slides . . .

19 / 24

art Changes

How has art diverged from CMSSW since its fork (circa March
2010)?

Simplification of inter-product references: removal of
persistent type-erasing containers, PtrVector becomes
more vector-like.

EventSetup removed: implications to all plugin
interfaces.

Removal of one-file, two-file, system.

Python configuration removed in favor of FHiCL
configuration language. All parameters are tracked.

Schedule rewritten, parts abstracted out.

EventProcessor parts abstracted out (initial setup, etc.).
Simplified to remove non-required operational modes.

20 / 24

art Changes

End paths and trigger paths separated: analyzer / outputs
constrained to end paths, filters / producers constrained to
trigger paths.

InputSource rewritten as pure interface.

Source template allows easier writing of input modules by
experiments.

FileIndex overhauled.

In-file SQLite DB. Parameter set info now stored here. Rest
of metadata on the way.

Build system: CMake-based, parallel-capable, including
macros for easier specification of tests.

21 / 24

art Changes

Plugin system replaced with one based on naming
conventions.

Reorganization of product-finding mechanisms (Group,
ProductGetter, etc.): better encapsulation, realignment
of concepts, interfaces and object management to clarify
ownership and improve efficiency.

Bi-directional associations Assns, FindOne, FindMany,
etc..

Product-mixing interface.

Flush principals.

lumi→ subrun, renamed types and functions throughout
the system. SubRun now valid from 0 (lumi valid from 1).

22 / 24

art Changes

Major library reorganization for dependencies (including
messagefacility).

messagefacility context setting moved to art.

Closed-link builds; warning-free builds.

Service interfaces and interface implementations;
corresponding changes to service declaration and
management system.

Services are now LEGACY, GLOBAL or LOCAL in
preparation for parallel operation.

Service callback mechanism simplified significantly and
SIGC++ dependency removed via use of C++2011 features
(variadic templates). Local and global signals in
perparation for parallel operation.

ParameterSet interface overhaul.

23 / 24

art Changes

Limited support for reconfiguration of modules and paths
under restricted circumstances.

New application / command-line option handling system.
Most command-line switches are converted to
ParameterSet configuration during configuration
postprocessing.

24 / 24

