
Overview of the CMS
Framework Review

Christopher Jones

CMS Framework Workshop

CMS Software Scale
People
3000 collaborators	

128 contributors to production code since June last year	

Code
2.5M LOC C++	

1.3M LOC python	

670 shared libraries and 1300 shared plugins	

Usage
100,000 concurrently running jobs	

200M jobs per year	

60B events processed (simulation and data)	

40PB of MC and Data

���2

CMS Framework Workshop

Usages
High Level Trigger

Prompt Reconstruction

Prompt Calibration

Full Calibration and Alignment
Supports iterative refinement	

Simulated Event Generation

Detector Simulation
Supports MC and data event mixing 	

Reconstruction

Analysis

Event Display
Random event access	

Modify settings of algorithms (modules) while processing	

Data File Merging
Used by CMS grid tools

���3

CMS Framework Workshop

Features and Subsystems
Python based configuration

Event processing engine
State machine driven	

may be changed for threading extensions
Runs, LuminosityBlocks, Events, open/close files	

Conditions
Validity interval based	

Manages dependencies between conditions	

Plugin management

Publish/subscribe data flow

Provenance tracking
Job configuration	

Event selection decisions	

���4

CMS Framework Workshop

Plugin Based Framework
Processing Plugins
Algorithms encapsulated in modules	

Types: Producers, Filters and Analyzers (3424)	

Processing Storage Plugins
Encapsulation of I/O	

Types: Sources (20) and OutputModules (7)	

Conditions (EventSetup) Plugins
Conditions/Alignment/Geometry encapsulated in modules	

Types: Sources (114) and Producers (357)	

Miscellaneous Plugins (Services)
Non-physics changing extension (80)	

Can monitor the state of the framework	

e.g. what modules are being run at the moment

Event Looping Plugins
Controls repeated looping over events in job (20)	

Generalized Plugins System
80 plugin types used by developers

���5

CMS Framework Workshop

Job Configuration
Jobs are configured using python

python objects are used to create a C++ tree structure
edm::ParameterSet class	

Module validation code can modify its part of the tree structure

Module constructors are passed their part of the tree structure
Immutable in constructor	

Final configuration tree stored in output files
Provenance tracking	

Serialized as a list of (hash, string) pairs	

Support tools
inspect provenance in files	

query modules as to allowed parameters

���6

CMS Framework Workshop

Multi-threaded Processing
Present
Supports processing multiple events concurrently	

Supports use of Intel’s Thread Building Blocks from within a module	

Provides mechanism to serialize thread unsafe algorithms	

All modules must declare what data products they will consume	

Provides a thread-safe message logging system	

Spring
Support concurrently running modules processing same event	

A prototype of the code already exists	

Future
Support concurrent processing of LuminosityBlocks and Runs	

���7

CMS Framework Workshop

Data Model Support
Modules are passed Run/Lumi/Event/EventSetup to process

Producers publish products to Run/Lumi/Event/EventSetup

Data and conditions products are immutable once published
const member functions must return same value given the same inputs	

Data Relationships
edm::Ref<> persistent index into any container, fast	

edm::Ptr<> persistent index into most containers, supports polymorphism	

edm::RefToBase<> persistent index into any container, supports polymorphism	

extremely difficult to specify all classes it needs for storage
deprecated

edm::AssociationVector<> associates data to each item in another collection	

edm::AssociationMap<> associate one or more data to items in a collection	

deprecated
edm::ValueMap<> associates data to items in multiple collections	

more efficient memory and I/O than edm::AssociationMap

Polymorphic and container type agnostic lookup
edm::View<>

���8

CMS Framework Workshop

Data Passing Interface
Data is requested from a generic container passed to modules
edm::Event, edm::Run, edm::LuminosityBlock and edm::EventSetup	

requests are done in a type safe manner	

Reduced set of requests
::getByLabel<T>	

pass set of strings which uniquely identify a product
pass edm::InputTag which encodes the same strings as above

::getByToken<T>	

pass an edm::EDGetToken which uniquely identify a product
edm::EDGetToken obtained by calling consumes on module’s constructor

::getManyByType<T>	

gets all products of that type

Data publishing
::put<T>	

passed an std::auto_ptr<T>

���9

CMS Framework Workshop

Data ‘Mixing’
Event pile-up support
Ability to take MC data products from N secondary events and accumulate
them into the primary event	

Used by all simulation jobs to approximate multiple beam interactions per event	

Knows how to change timing of hits to correspond to ‘bunch crossings’	

Re-engineered to use products from only one secondary event at a time	

‘Digi’ mixing support
Ability to take one secondary event and mix digis with primary event	

Digi: data for one detector Plugin after calibration has been applied	

Used for embedding studies	

Inject a known simulation event into a real data event to study tracking efficiency
Re-engineered to allow standard ‘raw to digi’ modules to be used internally	

I.e. uses a reduced version of the framework internally to run standard modules

���10

