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6D ICE goals

* Description: Development of experimental concepts and

hardware specifications necessary to validate the

feasibility of 6D ionization cooling. Relevant activities:

development of a plan for a MAP 6D cooling bench test in close
coordination with Design and Simulation and Technology
Development group activities;

development of a suite of experimental options;
detailed evaluation of potential beam demonstrations;
setup for the 6D bench test;

possible proposal at the conclusion of the Feasibility Assessment.



Summary of FY13
activities



Proton beam options

Proton source at ASTA and FFAG rings at KURRI



Proton beam options: ASTA

* Proton source at ASTA: 2.5 MeV protons, >101°
protons/s, 1 ms pulses, 5 Hz bunches, planned
operation 2017.

* Very low energy, requires a very thin solid or
gaseous/liquid absorber.

e Structure and beam parameters are far from the
typical muon beam regime of interest.



Proton beam: rings at KURRI

KURRI-FFAG Collaboration

= Collaboration with KURRI to study physics processes in an FFAG in a
high intensity environment with a charge exchange foil

= Understand effects of intensity dominated beams in non-scaling FFAG

= Understand effects of hadronic processes, dE/dx and multiple
scattering

= Understand effects of hadronic processes, dE/dx and multiple
scattering in intensity dominated regime

= Put another data point on the “ionisation cooling (heating)” landscape
= Focus is in planning

= Code development and simulation

= Studies of both “main ring” and ERIT

= Focus here is on ERIT
= Manpower limited effort
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Effects that can be addressed at
KURRI

* Errors in space charge models (in vacuum)

e Space charge screening by material
e Bulk ionization of material
e Polarization of material

* ERIT ring: 11 MeV protons, up to 2*10! protons
per bunch

e ADS ring: 150 MeV protons, 1019 protons per bunch
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From the presentation by Chris Rogers at one of the 6D ICE meetings



Space charge effect simulation in the ERIT (smaller) ring by S. Machida
From the presentation by Chris Rogers at one of the 6D ICE meetings ad\r
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Proton beam options (contd.)

 Latest update from Chris Rogers: attention focusing
on the KURRI ADS ring rather than ERIT ring, 150
MeV protons;

* both transverse and longitudinal emittances
nominally small, experimentally much larger due to
mismatch;

* the foil is Carbon, 20 pg/cm?;
* Intensity is 10° protons/bunch;

* RAL people go to Kyoto with some regularity to sort
out issues.



Muon beam options

NUSTORM and APO beam lines



Muon beam options

* NUSTORM:
e “spent” beam, little overhead,
e little/no disruption to the running neutrino program,
* relatively high muon beam intensity.

 APO g-2 beam line:

runs (semi-)parasitically off the g-2 beam,

little disruption to the running experimental program,
* some hardware to get the pion beam out to APO,

e some infrastructure is in place.

e Details in the next slides.



Muon beam @ nuSTORM
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NUSTORM beam structure

e 80-85 bunches @ 53 MHz (18.8 ns) about 1.33 sec
apart.

* 1019 muons per pulse in the range (0,300) MeV/c.

* Frequency mismatch between the muon beam and
the cooling cell does not lead to particle loss or
emittance blowup (1D simulation, 3D underway).

* Matching section is needed to increase
transmission and emittance reduction.

* Background is not an issue (simulated by Ao Liu).



Muon beam at APO

* Proposal by M. Popovic
* Momenta in the (0,300) MeV/c range,
e 108 muons/s,

* frequency could be changed as needed provided
there are RF cavities to put in the Recycler,

* muon beam emittance will depend on the
parameters of the pion transfer line, somewhat
tunable.



APO transfer line
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Comparison of muon sources

PSIM (uEA4) MusSIC COMET®@ NuFACT®
Muon intensity (/sec) 3.5x108 j [0 10M j [0k
Proton beam energy (GeV) 0.590 04 8 8
Proton beam power (W) 1.2M 400 56k 4M
Production efficiency (muon/W) 292 2.5 x 10%¢ 1.7 x 108 2.5x 10%¢
Time structure Continuous | Continuous Pulsed Pulsed
Muon momentum (MeV/c) 85-1254) 20-70 20-70 170-500
Beam current (pA) 1.8 1 7 Not given
Production target Graphite Graphite Tungsten Mercury jet
Max Solenoid Field Strength (T) 5.0 3.5 5.0 20

(1) Based on: “A New High-intensity, Low-momentum Muon Beam for theGeneration of Low-energy Muons at PSI”, Prokscha, T; Morenzoni, E et al. (Hyperfine Interactions,

Vol.159, Issue 1-4, pp. 385-388)
(2) COMET CDR

(3) Based on The Muon Collider/Neutrino Factory Target System, H.Kirk and K.McDonald (Aug.14,2010) and Study-Ii report

(4) Range over all beamlines
3rd April 2012

1/31/14

Sam Cook
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6D ICE detectors/design

Following the idea by Katsuya Yonehara



(Slide by Katsuya Yonehara)

General 6D ICE layout

Spectrometer
Phase rotator x-y slit

I Front end Middle Back end
® x-y & E matching
I e 6D detector
x-y slit

® RF buncher: Capture muons in an RF bunch
Possibly, it can be a 6D cooling lattice with
zero-crossing RF system w/o cooling material
e Add RF phase rotator in front of a spectrometer
Increase number of useful muons in a 6D cooling

e How to measure the time distribution and its evolution to demonstrate
longitudinal cooling?

e Strongly depends on the number of useful muons
1/31/14 MAP Friday phone meeting, Jan 31, 2014 19



Other relevant activities

* Contributed to the Muon Accelerator Staging Study
and the corresponding White Paper for the
Community Summer Study 2013.

e Contributed to the NuStorm Proposal, section on
using NuStorm as a testbed for the 6D muon
cooling demonstration.



Plans moving forward



Plans moving forward

* Throughout the rest of Feasibility Phase | 6D cooling
demonstration activities will be carried out as part of
Muon Accelerator Staging Study due to synergies.

* These would include continued studies of the NuStorm-
based 6D cooling demonstration and expanding the
pool of proton and muon beam options for the
experimental program.

* In Feasibility Phase Il the focus will return to the
Systems Demonstrations area after certain key decision
are made, notably the Initial Baseline Selection, and
Bench Test preparation could commence.



