The observation of gamma rays after neutral current interactions at Super-Kamiokande by using the T2K neutrino beam

The T2K Collaboration

Neutrino 2014 Poster ID:341

Kunxian Huang (Kyoto Univ., Japan)

Abstract

We report the first measurement of the neutral current quasi-elastic (NCQE) cross section on oxygen by observing nuclear de-excitation gamma rays with the T2K neutrino beam. The interaction from atmospheric neutrino is one of the main background in supernova relic neutrino search. The de-excitation gamma rays can be observed in the Super-Kamiokande (Super-K) water Cherenkov detector. We selected candidate events by using the T2K beam timing, dramatically reducing the background of natural radioactivity. We observed 43 events in the 4~30 MeV reconstructed energy region. We measured the NCQE cross section of $1.35 \times 10^{-38} \text{ cm}^2$.

Motivation

- No previous measurements of <u>NCQE</u> scattering on oxygen at hundreds of MeV with de-excitation gamma rays.
- Gamma rays produced by atmospheric neutrinos are one kind of the main backgrounds in <u>supernova relic neutrino searches</u>.

- NC samples can be used to search for <u>sterile neutrino oscillations</u>.
- Can use similar low-energy samples to look for low-mass dark matter.

T2K neutrino beam @Super-K

Off-axis 2.5 degree

Energy peak is at 630 MeV.

samples in T2K-SK data.

Neutrino Energy (GeV)

NCQE physics process After a neutral current interaction, a nucleon is kicked

NCQE interactions are the largest NC

- out from an oxygen atom.
- The de-excitation gamma rays are emitted from oxygen nucleus.
- When the kick-out nucleons

- interact with other oxygen nuclei in water, secondary gamma rays can also be produced.
- We can observe Cherenkov light from Compton electrons.
- Goal: De-excitation gamma rays of NCQE interaction. \bullet
- Backgrounds
 - v beam-related: NC-other interactions, CC interactions
 - v beam-unrelated: gamma rays from radioactive impurities of Super-K wall and PMTs, decay e from cosmic muon.

MC production

- •Neutrino flux-- simulated with FLUKA & Geant3, constrained by monitoring and external experiments.
- •NEUT--Use Ankowski model for NCQE scattering and photon production.
- •Detector simulation-- Geant3, GCALOR to simulate Cherenkov photons and neutrons which produce secondary gammas.

Observed Event Candidates

1.5

Neutrino Energy (GeV)

reconstruction energy (E_{rec}) region of 4~30MeV.

70.3%

23.6

3.9

2.2

• Simulation predicts 55.7 events.

• Discrepancies between MC and data at large Cherenkov angle.

0.5

Systematic Errors and σ_{NCOF} measurement result

Fraction of sample	Signal NCQE ~70%	NC-nonQE ~24%	CC ~4%	Beam unrel. ~2%	
Flux	11%	10%	12%	-	
Cross-section		18%	24%	-	
Primary γ Production	10%	3%	6%	-	
Secondary γ Production	13%	13%	7.6%		
Detector response	2.2%	2.2%	2.2%	-	
Oscillation Parameters	-	-	10%	-	
Total	20%	25%	30%	0.8%	

- T2K has already reached 6.57x10²⁰ protons on target (POT) now, and we have analyzed about half accumulated data to search for NCQE event candidates.
- After data reduction, 43 event samples are selected as γ ray candidates, which is lower than MC simulation prediction (55.7).
- There are discrepancies between MC and data in the Cherenkov angle distribution. Analysis is now in progress.
- Observed NCQE cross section: $< \sigma^{obs}_{\nu,NCOE} > = 1.35 \times 10^{-38} \text{ cm}^2$ with a 68% confidence interval of (1.06, 1.94) $\times 10^{-38} \text{ cm}^2$.