
Results
• High degree of consistency in measured Y0, σf between reactor cores
• Clear discrepancy between measurement and newest reactor models 

• Detection efficiency uncertainty
dominates flux systematics
• Statistical uncertainty is completely

negligible from high statistics:
>300,000 IBD detected
• Flux measurement is relatively 

insensitive to precise reactor history
• Very little correlation between 

flux and survival probability

data/model [2,3] 0.0947 +/- 0.021

σf 5.934 x 10-43 cm2 / fission

Y0 1.553 x 10-18 cm2 / (p⋅GW⋅d)

235U : 238U : 239Pu : 241Pu 0.586 : 0.076 : 0.288 : 0.050

Effective Baseline 573 m
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The Daya Bay reactor νe experiment has provided the most sensitive measurement of the neutrino mixing parameter θ13 by measuring relative differences in 
reactor νe interaction rates between detectors at long and short baselines. In addition, the Daya Bay experiment can make a high-statistics measurement of the 
absolute reactor νe flux and spectrum. Daya Bay’s first absolute flux measurements are presented in this poster along with comparisons to previous experiments 
and existing reactor models.  The absolute spectrum analysis and its value in understanding existing reactor models will also be discussed. 

The Daya Bay Experiment Measuring Absolute Reactor Flux
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• How many neutrinos are coming out of nuclear reactors per fission?
• Daya Bay flux measurement can provide high-statistics check of existing 

models/measurements and test for existence of the ‘reactor anomaly’ [2,3]

• Different metrics can be used to describe same flux measurement ∫SdE:
• Y0: Rate, cm2/(p⋅GW⋅d): relies on thermal power input from power plant
• σf: Cross section, cm2/fission: common in literature, requires burn-up info
• Key Inputs:
• Detector: Target protons (LS chemistry, target mass),

absolute detection efficiency (Analysis in G. Cao’s poster)
• Baselines (GPS, metrological measurements)
• Inverse beta decay cross section (Theory, other exp’s)
• Neutrino oscillation from three-neutrino mixing
• Reactor: Thermal powers, burn-up and fission fractions

for each core; data provided by power company 
(See X. Ma’s poster for details)

B. Littlejohn, University of Cincinnati

Analysis

Detector CharacteristicsDetector Characteristics

Target Mass 20 Tons

Photosensors 192 PMTs 

Charge/MeV 165 PE

Resolution 8%/√E

Light Reflector

• Detect νe via inverse beta decay (IBD)
• Relative flux+spectrum comparison 

between near/far sites gives world’s best 
measurement of θ13 [1]

• Six 2.95 GWth nuclear reactors; six liquid scintillator detectors, three sites
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Global Context

Absolute Spectrum Measurement

• Re-calculated average measured flux of previous experiments utilizing 
consistent inputs (˦˩˩neutron = 880.1 s [5], non-zero θ13)
• Daya Bay measurement is completely consistent with global average flux
• See the same ‘reactor anomaly’ as indicated by previous global fit

• Current rate+shape osc. fit largely insensitive to underlying spectrum model
• Working to provide a comparison of nominal to measured spectrum
• Will provide insight on nature of the disagreement with modeled reactor flux
• Spectral features: May

indicate improperly 
modeled reactor physics [6]
• Flat: Could arise from 

either improperly modeled 
reactor physics and/or 
large-Δm2 oscillations to 
sterile neutrinos

AD GdLS mass/20t
1 0.99705
2 0.9983
3 0.99455
4 0.99565
5 0.99955
6 0.9946
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• Blind analysis: Sequester true reactor powers and fission fractions 
• Utilized two differing analysis methods
• Fit oscillation and flux simultaneously using the Daya Bay rate-only X2 [4] 

with an additional normalization fitting parameter

• Calculate flux directly in multiple ways using nominal inputs
• Use either one common model with differing thermal power for all cores, or 

use reactor-specific modeling of fission fractions and other corrections

Systematic δɸ/ɸ (%)
Detection Efficiency 2.0

Target protons 0.5

Thermal power 0.5

Fission Fractions 0.6

Oscillation 0.2

Statistics 0.2

Total 2.3 Core C - Detector D Avg.
 Survival Probability

No Systematic Correlation!
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Common to all cores Differing between cores: fission fraction, etc.
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Previous Global: R = 0.943 +- 0.008 (exp.)

θ13 included here normalization

≈
≈

Reference Model: Huber (3 isotopes), Mueller (238U)

A Daya Bay Antineutrino Detector

Effect of Thermal Power, Burn-Up on Antineutrino Rate

Small decrease w/ burn-up

Flux Results for Individual Antineutrino Detectors

Daya Bay Flux Results in the Global Context

Systematics Breakdown

6-Detector Rate+Shape Result: Measured Versus Best-Fit Spectra

(Same model for all cores)
(Correct history for each core)


