Electromagnetic Design for the Rear Section of the KATRIN Experiment

Karlsruhe Institute of Technology F. Heizmann, M. Babutzka, and K. Valerius, for the KATRIN Collaboration KCETA, Karlsruhe Institute of Technology

- mass scale by investigating the kinematics of tritium β -decay

Rear Section

a calibration and monitoring system for KATRIN featuring a versatile photoelectron source

Requirements

- angular range: up to largest transmissible pitch angle
- angular spread $\leq 4^{\circ}$ at full angle
- energy range: up to 25 keV energy spread: 0.2 eV

Implementation

- UV-light based photo emission of a gold surface
- electrons guided adiabatically by magnetic field
- kinetic energy controlled by post acceleration electrodes

highly stable rate: $\Delta R/R < 10^{-3}$ over 3 min at $R \le 10^5 s^{-1}$

- electric dipoles break electron trap by $\vec{E} \times \vec{B}$ drift
- magnetic dipoles steering electron beam

precise electromagnetic design simulations required, consisting of field calculation, optimization and electron tracking

implemented rear section 3D model in Kassiopeia3.0 (KATRIN specific simulation package)

Results

electron gun angle of 10°, 1500 simulated electrons with gaussian energy distribution: mean 0.15 eV, sigma 0.075 eV mechanical fiber positioning determined by simulations searching for the optimal starting position

- electron gun angles up to 10° sufficient for covering full angular range
- small beam spot size is elementary to reduce angular spread 200 µm optical fibers

www.kit.edu

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

HELMHOLTZ ASSOCIATION

Alliance for Astroparticle Physics

