

Future Short Baseline Sterile Neutrino Searches with Nuclear Decays

Barbara Caccianiga-INFN Milano

Outline of the talk

- Why sterile neutrino? Experimental hints;
- How can we confirm or disproof the hints towards sterile nu?;
- SOX: Short Distance neutrino Oscillations with boreXino;

Sterile neutrino search: experimental hints

ν_e , anti- ν_e DISAPPEARANCE

v_e , anti- v_e APPEARANCE

Reactor anomaly ~2.5 σ

Re-analisys of data on antineutrino flux from reactor short-baseline (L~10-100 m) shows a small deficit of R=0.943 ±0.023

G.Mention et al, Phys.Rev.D83, 073006 (2011) , A.Mueller et al. Phys.Rev.C **83**, 054615 (2011)*;* Gallex/SAGE anomaly ~3σ

Deficit observed by Gallex in neutrinos coming from a ⁵¹Cr and ³⁷Ar sources

 $R = 0.76^{+0.09}_{-0.08}$

C. Giunti and M. Laveder, Phys.Rev. C83, 065504 (2011), arXiv:1006.3244 [hep-ph].

Accelerator anomaly ~3.8 \sigma

Appearance of anti- v_e in a anti- v_μ beam (LSND). A.Aguilar et al. LSND Collaboration Phys.Rev.D 64 112007 (2001).

Confirmed by miniBooNE (which also sees appearance of v_e in a v_μ beam) A.Aguilar et al. (MiniBooNE Collaboration) Phys.Rev.Lett. 110 161801 (2013)

Possible explanation: mixing of the active flavours with a sterile neutrino $\Delta m^2 \sim 1 \ eV^2$

Some observations

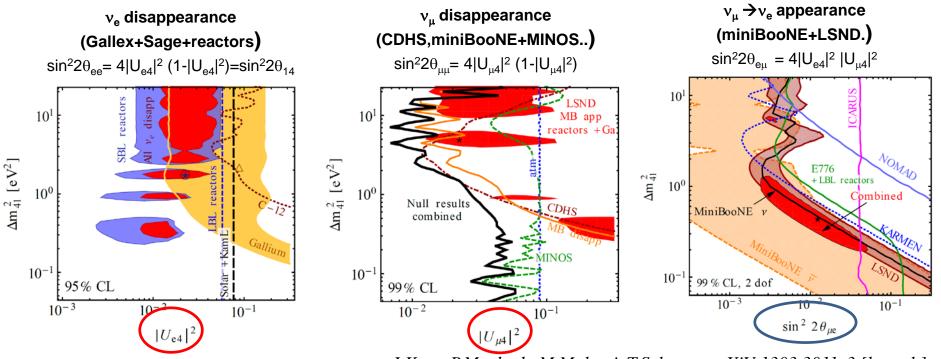
- It is not possible to accomodate all the anomalies in a three flavour scenario: we need at least one sterile neutrino;
- (3+1), (3+2), (3+1+1) scenarios fit similarly well the data (but 3+1 maybe preferrable for cosmological reasons);
- However there is a tension between appearance and disappearance data (due to the fact that v_{μ} disappearance experiments give no hints for disappearance);

Sterile neutrino search: experimental hints

$$\Delta m_{41}^2$$

 U_{e1}

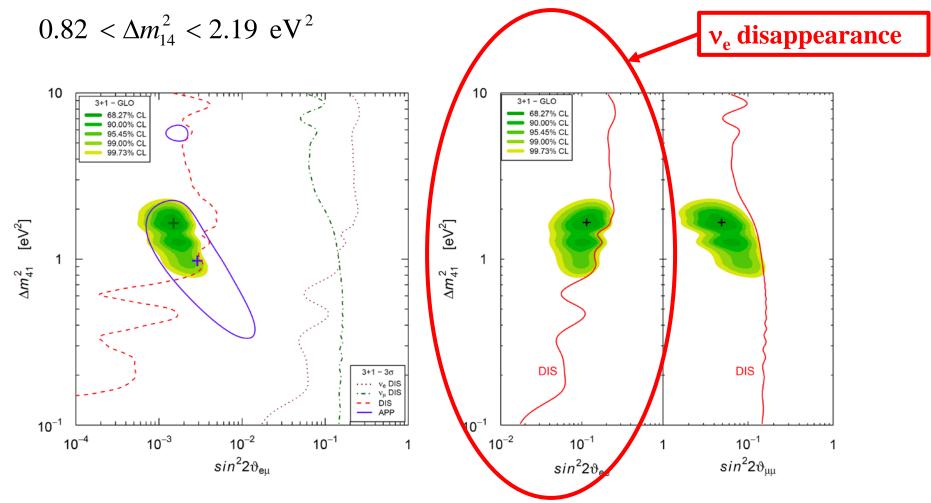
 $U_{\mu 1}$


 $U_{\tau 1}$

 U_{s1}

In the (3+1) scenario,

$$\Delta m_{41}^{2}, \qquad \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{bmatrix} \longrightarrow \begin{bmatrix} P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2} 2\theta_{\alpha\beta} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \\ P(v_{\alpha} \rightarrow v_{\alpha}) = 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2} \left(\frac{\Delta m_{41}^{2} L}{4E}\right) \end{bmatrix}$$


 $\Delta m_{21}^2 << \Delta m_{31}^2 << \Delta m_{41}^2 \quad |U_{e4}|^2, |U_{\mu4}|^2, |U_{\tau4}|^2 << 1 \quad |U_{s4}|^2 \cong 1$

J.Kopp, P.Machado, M.Maltoni, T.Schwetz arXiV:1303.3011v3 [hep-ph]

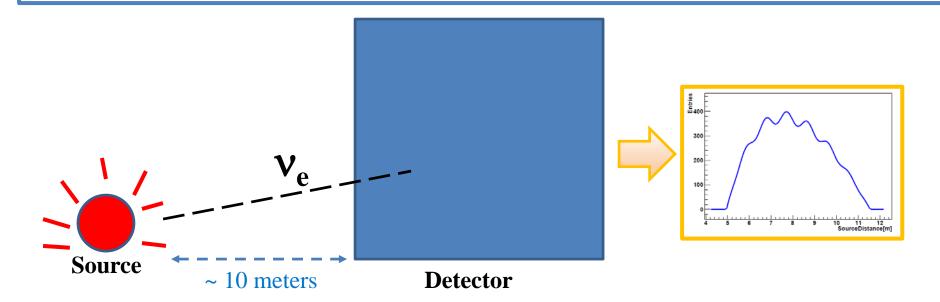
Sterile neutrino search: experimental hints

• Global fit of all data isolates a very narrow region of the parameter space

Fit in the (3 + 1) scenario, including all data (appearance and disappearance) with the exception of the low energy excess by MiniBooNE; *C.Giunti,M.Laveder,Y.F. Li,H.W.Long arXiV:1308.5288 v3 [hep-ph], Phys.Rev.D 88, 073008 (2013)*

Sterile neutrino search using nuclear decays

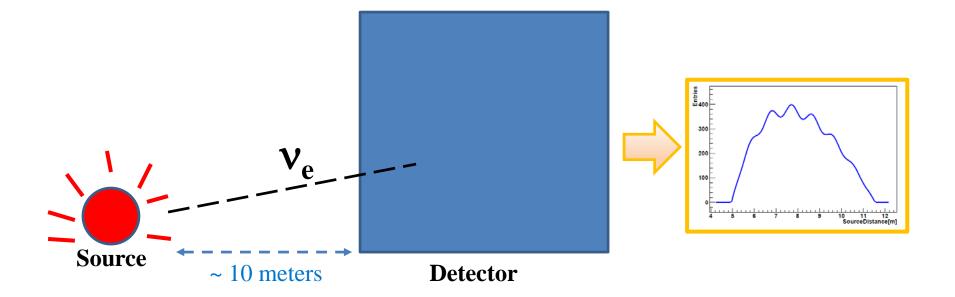
These experimental anomalies deserve indipendent confirmation or disproval


It is possible to investigate the relevant parameter space region by means of neutrinos (or anti-neutrinos) produced in nuclear decays;

In order to be sensitive to $\Delta m^2 \sim 1 \text{ eV}^2$

- Need a source with E ~ 1- 10 MeV
- Located at a distance L ~ 1-10 m

1) Look for disappearance of v_e emitted by the source;


2) Look for oscillation waves within the detector volume (oscillometry);

Sterile neutrino search using nuclear decays

Several advantages of using nuclear decays

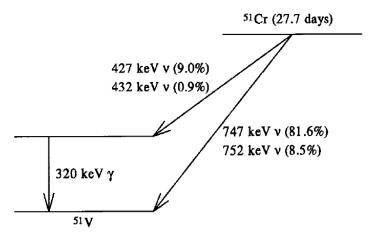
- Intrinsicly pure v_e (or anti- v_e) beam;
- Neutrino spectrum known very precisely;
- Neutrino cross-sections in the ~MeV region known more precisely than at ~ GeV;
- Neutrino flux known with high precision (~1-5 % level);

Possible sources

v type	Source type	Life τ	Decay mode	Energy [MeV]	Production mode	
ν _e	⁵¹ Cr	40 d	EC	0.75 (90%) 0.43 (10%)	Neutron irradiation of ${}^{50}Cr$ in reactor $\Phi_n \ge 5 \ 10^{14} cm^{-2} s^{-1}$	
	³⁷ Ar	35 d	EC	0.811	Fast neutron irradiation of Ca oxide in reactor	
- v _e	¹⁴⁴ Ce- ¹⁴⁴ Pr	411 d	β-	<2.997	Chemical extraction from spent fuel	
	⁹⁰ Sr	40 y	β-	<2.27	RHS (RadioNuclide Heat Source)	
	⁸ Li	868 ms	β-	<12.9	Beam of neutrons on a ⁷ Li target (ISODAR facility)	

neutrino source

- detecting reaction v + e → v + e radioactive background is a problem; not possible to put the source inside the detector;
- monocromatic; lower energy;


anti-neutrino source

 detecting reaction v+ p → n + e⁺ very little background; may be feasible to put the source inside the detector;

• Continuum spectrum; higher energy;

Possible sources: ⁵¹Cr

Source characteristics: v source, $E_v = 750 \text{ keV}$ $\tau = 40 \text{ days}$

Decay scheme of ⁵¹Cr to ⁵¹V through electron capture.

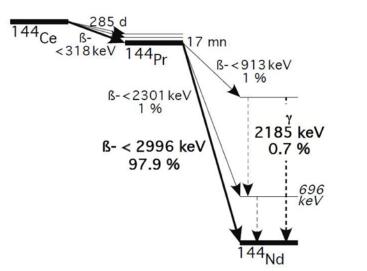
ADVANTAGES

- γ emitted by the source (E=320 keV) not too difficult to handle;
- Cr used by Gallex still available (36 Kg enriched at 38.6% in ⁵⁰Cr);

DISADVANTAGES

 detecting reaction is v + e⁻ → v + e⁻ radioctivity is a serious background (unless reaction with coincidence taglike in LENS);

Production mode

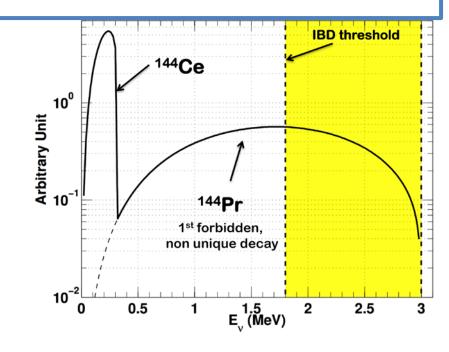

- thermal neutrons impinging on ⁵⁰Cr (high neutron capture cross-section ~ 17 barn);
- High neutron flux is needed (>5 10¹⁴ cm⁻² s⁻¹);
- Possibility at the OakRidge High Flux Isotope Reactor (HFIR);

Source activity ~ 10 MCi ~370 PBq (3.7 x 10 17 v/sec)

Possible sources: ¹⁴⁴Ce-¹⁴⁴Pr

Source characteristics: anti-v source, E_v <2.99 MeV τ =411 d

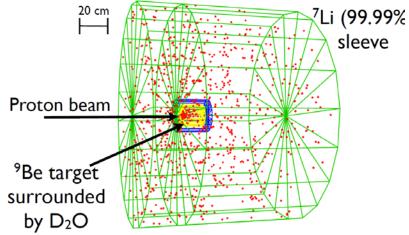
ADVANTAGES


- detecting reaction is v+p → n + e+ very little background;
- Long lifetime;

DISADVANTAGES

 high energy γ_s (E=2.2 MeV) emitted by the source are difficult to handle;

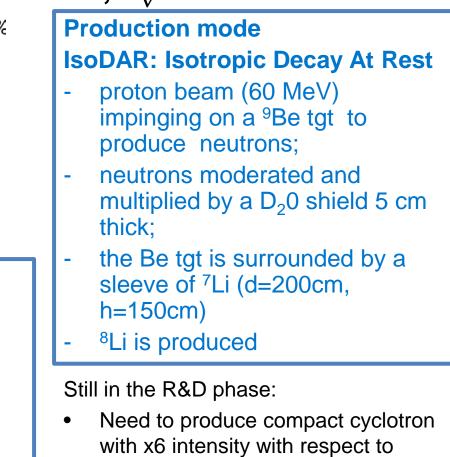
Production mode


- extracted from exhausted nuclear fuel;
- Possibility at the Mayak industrial complex (Russia)

Source activity ~100 kCi ~3.7PBq (3.7 x 10 15 v/sec)

Possible sources: ⁸Li

Source characteristics: anti-v source, $E_v < 13 \text{ MeV} \tau = 868 \text{ ms}$



ADVANTAGES

- Long data taking time possible;
- High Energy;

DISADVANTAGES

- Anti-nu flux known only at ~5% level;
- Production point of ⁸Li is not point-like (dominated by z uncertainty (150 cm);

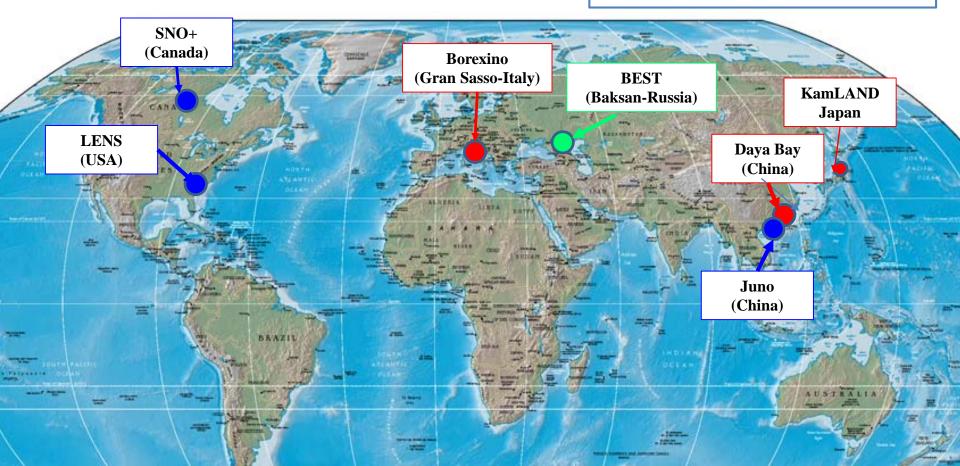
• Prototype by ~2016

medical isotope industry;

Source activity ~ 8.2 x 10 14 v/sec

POSTER 'Accelerator design and modeling for the decay-at-rest neutrino experiments DAEdALUS and IsoDAR" Dr.WINKLEHNER, Daniel

Candidate detectors


Requirements

- Underground location;
- Large mass, ultra-pure detectors;
- Capability to measure E and L (oscillometry);

Existing large liquid scintillator experiments (Borexino, KamLAND, Daya-Bay)

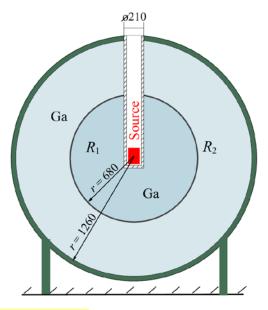
Future large liquid scintillator experiments (SNO+, LENS, JUNO)

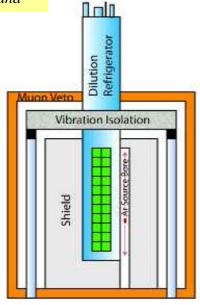
Future experiments based on other techniques (RICOCHET, BEST)

Several papers and ideas

Technique	Detector	Sources	Reaction	Activity	Reference
	SOX (Borexino)	⁵¹ Cr,	v+e →v+e	10MCi	JHEP08(2013)038,
		¹⁴⁴ Ce- ¹⁴⁴ Pr	v+p → e ⁺ +n	100kCi	Phys. Rev. Lett. 107, 201801 (2011)
	KamLAND	⁸ Li (ISODAR)	e+n	8.2 x 10 ¹⁴ v/sec	arXiV:1205.4419, arXiV:1310.3857
Large Liquid scintillator		¹⁴⁴ Ce(CeLAND)	e+n	100kCi	arXiv:1312.0896
detectors	Daya-Bay	¹⁴⁴ Ce- ¹⁴⁴ Pr	+p→e++n	500kCi	arXiV:1109.6036
	LENS	⁵¹ Cr	v+ ¹¹⁵ In → ¹¹⁵ Sn*+e	10MCi	Phys.Rev.D75 093006(2007)
	JUNO	⁸ Li (ISODAR)	e+p-→e++n	8.2 x 10 ¹⁴ v/sec	arXiV:1310.3857
Radiochemical	BEST	⁵¹ Cr	v+ ⁷⁰ Ga → ⁷¹ Ge+e	3MCi	arXiV:1204.5379
Bolometers	Richochet	³⁷ Ar	v+N →v+N	5MCi	Phys. Rev. D85, 013009, (2012)

Several papers and ideas


BEST (Baksan experiment on Sterile Transition)

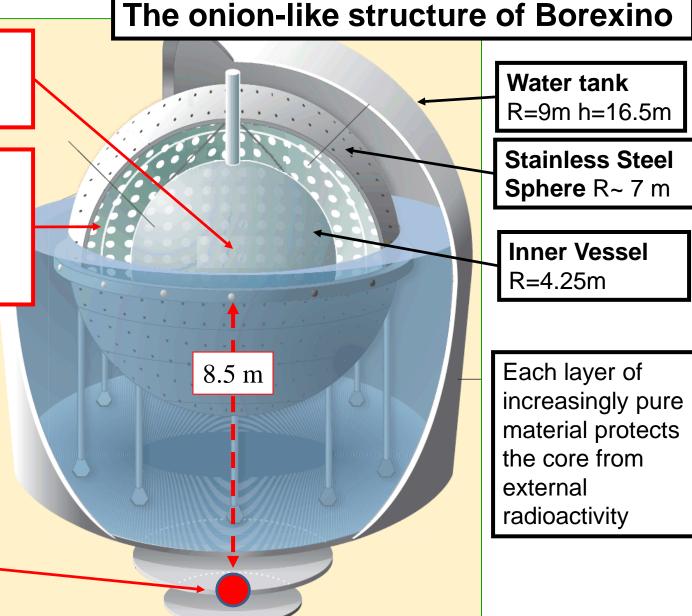

- 50tons of liquid Gallium divided into two separate concentrical regions;
- ⁵¹Cr source in the center (3 MCi);
- Radiochemical reaction $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^{-};$
- After exposure of few days, trasfer the liquid and count Ge produced (same as SAGE techinque);
- If no oscillation: ~65 atoms/day of Ge in each region should be produced;

POSTER'"Status of the BEST *project (Baksan Experiment on Sterile Transitions" Dr.Ibragimova Tattiana

RICOCHET

- 10000 Si bolometers (total mass 500 Kg) arranged in a column of 0.42m x 2 m ;
- ³⁷Ar source (~5MCi);
- Coherent scattering of neutrinos on Ar nuclei;

Several papers and ideas


Technique	Detector	Sources	Reaction	Activity	Reference
	SOX (Borexino)	⁵¹ Cr,	v+e →v+e	10MCi	JHEP08(2013)038,
		¹⁴⁴ Ce- ¹⁴⁴ Pr	v+p → e ⁺ +n	100kCi	Phys. Rev. Lett. 107, 201801 (2011)
	KamLAND	⁸ Li (ISODAR)	e+p→e++n	8.2 x 10 ¹⁴ v/sec	arXiV:1205.4419, arXiV:1310.3857
Large Liquid scintillator		¹⁴⁴ Ce(CeLAND)	+p→e++n	100kCi	arXiv:1312.0896
detectors	Daya-Bay	¹⁴⁴ Ce- ¹⁴⁴ Pr	+p-→e++n	500kCi	arXiV:1109.6036
	LENS	⁵¹ Cr	v+ ¹¹⁵ In → ¹¹⁵ Sn*+e	10MCi	Phys.Rev.D75 093006(2007)
	JUNO	⁸ Li (ISODAR)	+p-→e++n	8.2 x 10 ¹⁴ v/sec	arXiV:1310.3857
Radiochemical	BEST	⁵¹ Cr	v+ ⁷⁰ Ga → ⁷¹ Ge+e	3MCi	arXiV:1204.5379
Bolometers	Richochet	³⁷ Ar	v+N →v+N	5MCi	Phys. Rev. D85, 013009, (2012)

SOX: Short distance v_e Oscillations with boreXino

Core of the detector: 300 tons of scintillator (pseudocumene+PPO)

2214 photomultiplier tubes pointing towards the center to view the light emitted by the scintillator;

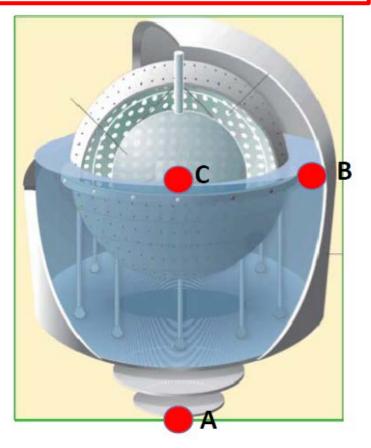
PIT under the detector where the source can be located.

SOX: the tunnel under the detector

SOX: Short distance v_e Oscillations with boreXino

The SOX project

- Source in position A: plan to use both ⁵¹Cr neutrino and ¹⁴⁴Ce-¹⁴⁴Pr anti-neutrino sources;
- Future possibility: put the ⁴⁴Ce-¹⁴⁴Pr in the center; more invasive → needs significant refurbishment of the apparatus;

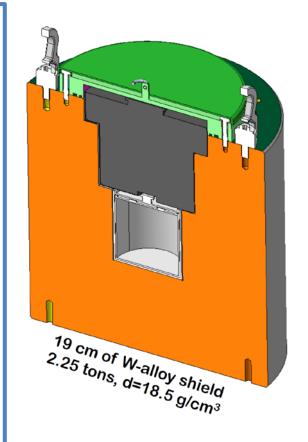

Borexino in a nut-shell

- Borexino is taking data since 2007 in the Gran Sasso Laboratory;
- Capability to detect neutrinos has been demostrated by results on solar neutrinos (see dedicated talk by G.Ranucci);
- Capability to detect anti-neutrinos has been demostrated by results on geo-neutrinos (see poster n. 12 (board 58) by L.Miramonti);

Detection of ~ 500 pe/MeV

Energy resolution $\sigma_{E}/E \sim 5\%$ (@1MeV)

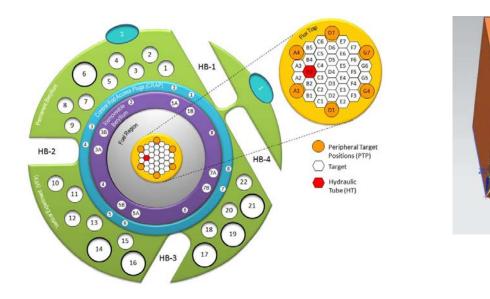
Position resolution $\sigma_x \sim 10 \text{ cm} (@1\text{MeV})$


SOX: Short distance v_e Oscillations with boreXino

It is both a technical and a burocratical challenge

- High activity requires appropriate shielding and suitable transportation containers;
- Many authorizations (transportation, handling, storage) are required;

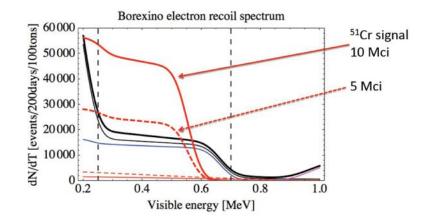
Source design is driven by

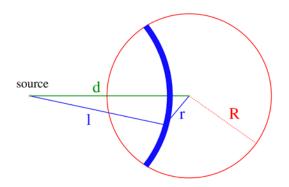

- Production process technique;
- Biological shielding requirements (tungsten alloy shielding);
- Thermal constraints;
- Mechanical constraints (tunnel dimensions, total weight);
- Transportation requirement and containers design and production;
- Hot cell manipulation;
- Handling in the experimental Hall;
- Calorimeter integration (to measure precisely the activity of the source);

SOX-Cr: production of the ⁵¹Cr source

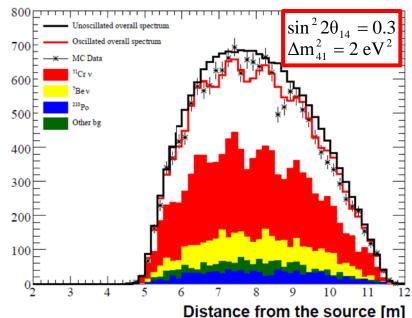
Source characteristics: $E_v = 750 \text{ keV} \quad \tau = 40 \text{ days}$

- 36 Kg of Cr (enriched in 50Cr (38.6%) used for Gallex calibration is still available;
- Needs to be activated with neutron irradiation;
- OakRidge National Laboratory is the best choice;
- Easiest solution: cast the Cr chips in cylindrical rods;
- Probably need two cycles of the reactor;
- Needs a 10 MCi source (or two 5 MCi sources);

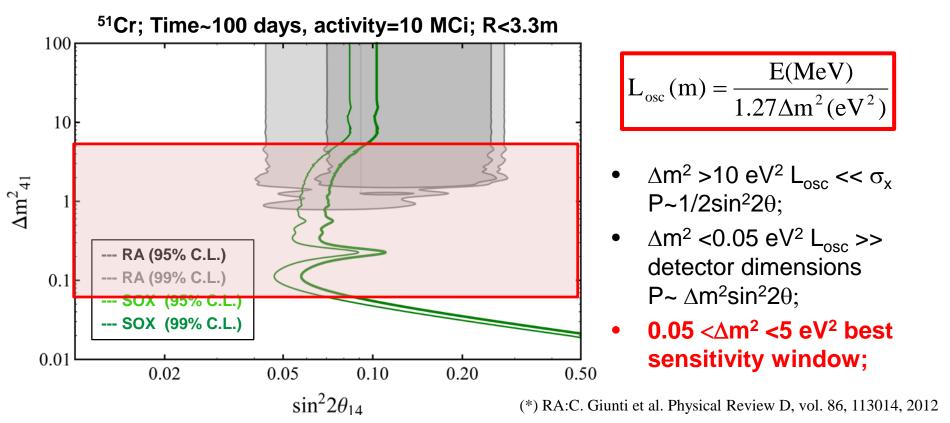



Short data taking period: ~ 2-3 months

SOX-Cr: sensitivity to sterile neutrino of the ⁵¹Cr source


- v_e + e⁻ → v_e + e⁻ :the signal (electron recoil) is relatively featurless;
- To distinguish signal from radioactive background
 - 1. use the fact that the source decays while background remains constant;
 - 2. Also use the position distribution of events;

• Since the source is external the distribution of expected neutrino interaction is not uniform in the volume;


• For some values of the oscillation parameters, waves will be observed;

SOX-Cr: sensitivity to sterile neutrino of the ⁵¹Cr source

Source characteristics: $E_v = 750 \text{ keV} \quad \tau = 40 \text{ days}$


- $v_e + e^- \rightarrow v_e + e^-$
- Data taking time: 100 days; accumulated neutrino events ~ 14000
- Activity of the source must be known at 1-2 %

SOX-Ce: production of the ¹⁴⁴Ce- ¹⁴⁴Pr source

Source characteristics: $E_v < 2.99 \text{ MeV} \quad \tau = 411 \text{ days}$

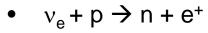
- Spent nuclear fuel (Kola Nuclear Power Plant (Murmansk, Russia);
- Processing of the spent fuel in Mayak complex.
- Possibility to obtain ¹⁴⁴Ce-¹⁴⁴Pr source with activity ~ 100 kCi;

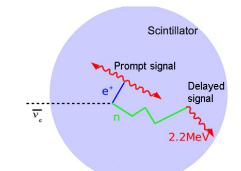
POSTER'Search for a 4th light nu state with a 5 PBq 144Ce-144Pr electron antineutrino generator next to a large liquid scintillator detector" Dr.LASSERRE, Thierry

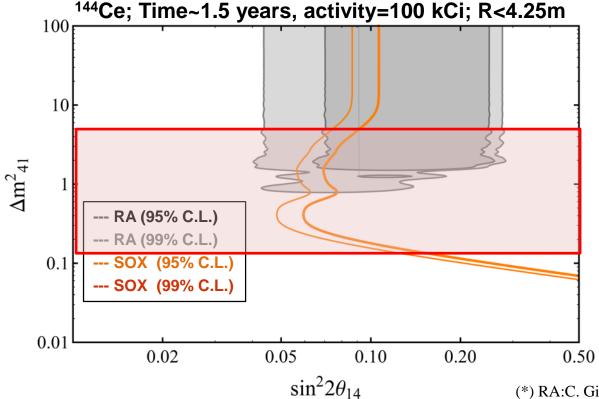
Kola Nuclear Power Plant

SOX-Ce: production of the ¹⁴⁴Ce- ¹⁴⁴Pr source

Complicated transportation logistic in order to comply with safety regulations for transport of radioactive material:

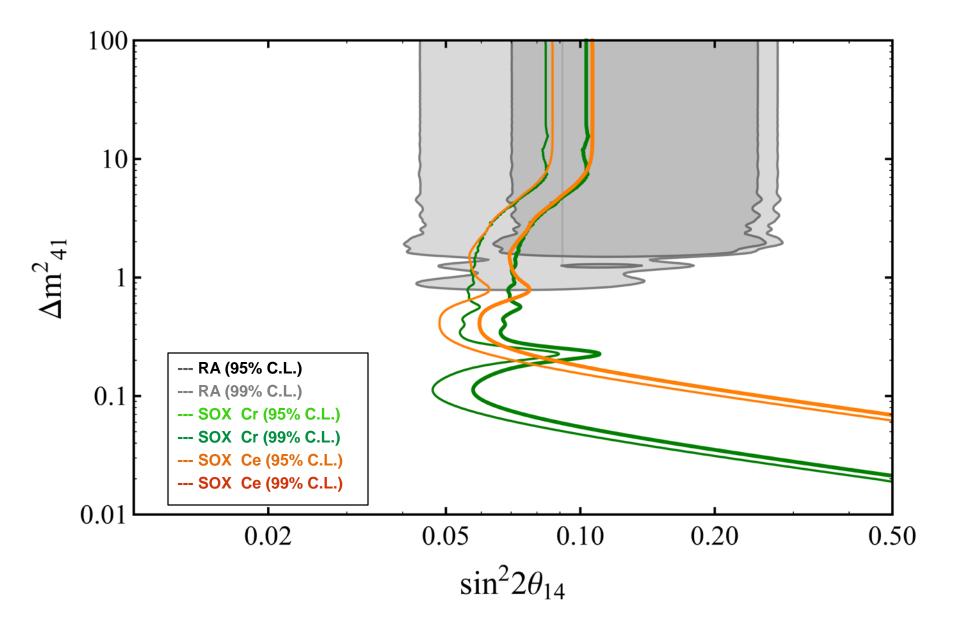

- Spent nuclear fuel will be shipped from Kola reactor to Mayak ~ end of 2014;
- ¹⁴⁴Ce source ready for shipment to Gran Sasso by Fall 2015;
- Transportation to Gran sasso in November 2015;


DIFFICULT from Mayak to Gran Sasso; IMPOSSIBLE from Mayak to Japan

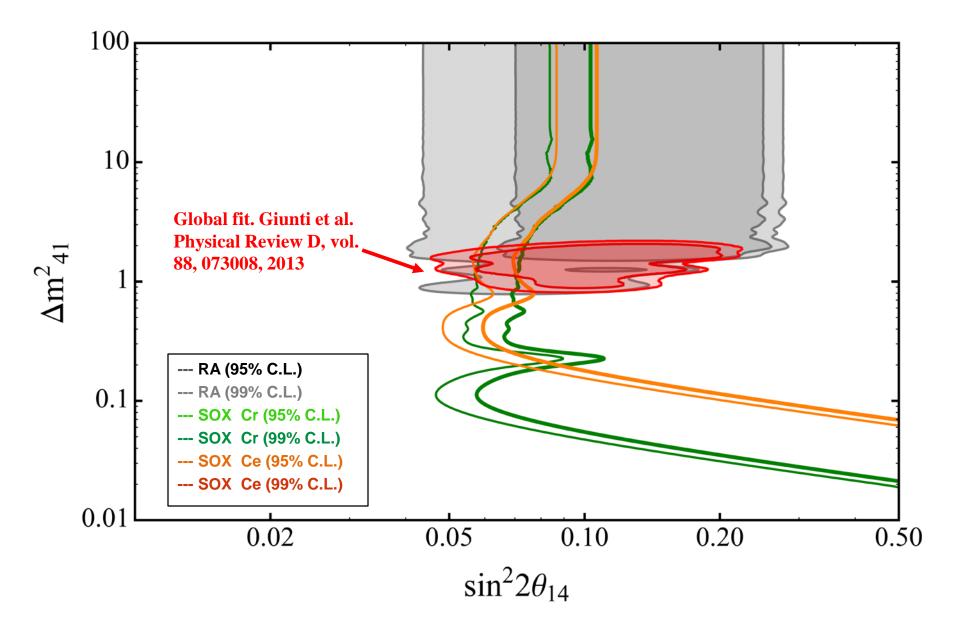

SOX-Ce: sensitivity with the ¹⁴⁴Ce- ¹⁴⁴Pr source

Source characteristics: $E_v < 2.99 \text{ MeV}$ $\tau = 411 \text{ days}$

- Data taking time: 1.5 years; events accumulated ~10000
- Energy resolution more important than position resolution;
- Activity of the source must be known at 1-2 %



$$L_{osc}(m) = \frac{E(MeV)}{1.27\Delta m^2 (eV^2)}$$


- $\Delta m^2 > 5 \text{ eV}^2 \text{ L}_{\text{osc}} << \sigma_x$ P~1/2sin²20;
- Δm² <0.1 eV² L_{osc} >> detector dimensions P~ Δm²sin²2θ;
- 0.1 <∆m² <5 eV² best sensitivity window;

(*) RA:C. Giunti et al. Physical Review D, vol. 86, 113014, 2012

SOX: sensitivity to sterile neutrino

SOX: sensitivity to sterile neutrino

- Searching for sterile neutrino is a challenging enterprise (high risk/ high gain);
- SBL disappearance experiments with sources have some advantages over SBL reactor/accelerator experiments (better control of neutrino spectra, flux and purity; possibility to do oscillometry);
- Several proposals/ideas of experiments which should address this issue;
- MOST IMPORTANTLY: first data available with SOX-Ce by the end of 2015 / beginning 2016;