Nuclear Matrix Elements for $\beta \beta$ Decay

J. Engel

University of North Carolina

June 6, 2014

Neutrinoless Double-Beta Decay

If energetics are right (ordinary beta decay forbidden)...
and neutrinos are their own antiparticles...

can observe two neutrons turning into protons, emitting two electrons and nothing else.

Mutrinoless Double-Beta Decay

 If energens are right (ordinary beta decay foridden)...
Introductory material: $\beta \beta$ decay is awesome, blah, blah, ...

 into protons, emitting two electrons and n ning else.Different rom already observed two-p atrino process.

Usefulness of Double-Beta Decay

If it's observed, neutrinos are their own antiparticles!

> and

Light-v-exchange amplitude proportional to "effective mass"

$$
m_{e f f} \equiv \sum_{i=1}^{3} m_{i} u_{e i}^{2}
$$

If lightest neutrino is light:

- $m_{\text {eff }} \approx \sqrt{\Delta m_{\text {sol }}^{2}} \sin ^{2} \theta_{\text {sol }}$
(normal)
- $\mathrm{m}_{\text {eff }} \approx \sqrt{\Delta \mathrm{m}_{\mathrm{atm}}^{2}} \cos 2 \theta_{\text {sol }}$ (inverted)

Usefulness of Double-Beta Decay

If it's observed, neutrinos

 are their own antiparticles!
and
But rate also proportional to square of a nuclear matrix element! proportional to ettective mass

$$
m_{e f f} \equiv \sum_{i=1}^{3} m_{i} U_{e i}^{2}
$$

If lightest neutrino is light:

- $m_{\text {eff }} \approx \sqrt{\Delta m_{\text {sol }}^{2}} \sin ^{2} \theta_{\text {sol }}$
(normal)
- $m_{\text {eff }} \approx \sqrt{\Delta m_{\mathrm{atm}}^{2}} \cos 2 \theta_{\text {sol }}$ (inverted)

Other Mechanisms

If neutrinoless decay occurs then v's are Majorana, no matter what:

but light neutrinos may not drive the decay:

For $m_{R} \approx 1 \mathrm{TeV}$, exotic processes can occur with roughly same rate as light-v exchange. Untangling the two is a long story; focus here on light v's since we know they exist.

Form of Nuclear Matrix Element

$$
\begin{gathered}
M_{o v}=M_{o v}^{G T}-\frac{g_{V}^{2}}{g_{A}^{2}} M_{o v}^{F}+\ldots \\
\text { with } \\
M_{o v}^{G T}=\langle f| \sum_{a, b} H\left(r_{a b}, \bar{E}\right) \vec{\sigma}_{a} \cdot \vec{\sigma}_{b} \tau_{a}^{+} \tau_{b}^{+}|i\rangle+\ldots \\
M_{o v}^{F}=\langle f| \sum_{a, b} H\left(r_{a b}, \bar{E}\right) \tau_{a}^{+} \tau_{b}^{+}|i\rangle+\ldots \\
H(r, \bar{E}) \approx \frac{2 R}{\pi r} \int_{0}^{\infty} d q \frac{\sin q r}{q+\bar{E}-\left(E_{i}+E_{f}\right) / 2} \approx \frac{R}{r}
\end{gathered}
$$

Corrections ("forbidden" terms, weak form factors ...) $\approx 30 \%$.

Calculating Matrix Elements

It's hard, because

- Relevant nuclei heavy $(A>75)$ and complicated.
- Never measured; nothing to calibrate to.
- Structure of initial and final nuclear ground states quite different \Longrightarrow matrix element small and sensitive.

Calculating Matrix Elements

It's hard, because

- Relevant nuclei heavy $(A>75)$ and complicated.
- Never measured; nothing to calibrate to.
- Structure of initial and final nuclear ground states quite different \Longrightarrow matrix element small and sensitive.

State of Nuclear-Structure Theory
In light nuclei, theory has made transition from art to science. In heavy nuclei, it's now somewhere in between.

Calculating Matrix Elements

It's hard, because

- Relevant nuclei heavy $(\mathcal{A}>75)$ and complicated.
- Never measured; nothing to calibrate to.
- Structure of initial and final nuclear ground states quite different \Longrightarrow matrix element small and sensitive.

State of Nuclear-Structure Theory
In light nuclei, theory has made transition from art to science. In heavy nuclei, it's now somewhere in between.

Q: Is it enough of a science yet to get accurate double-beta matrix elements?

A: It's getting there!

But at Present...

Same level of agreement in 2014. Not so great. And they may all be missing something.

But at Present...

Same level of agreement in 2014. Not so great. And they may all be missing something.

All These Models Start with Mean-Field Potential

In GCM \& QRPA mean-field wave functions can include "correlations" by deforming or violating particle-number conservation.

Contrasting the Approaches

Building on Mean Field

Contrasting the Approaches

Building on Mean Field

Generator-Coordinate Method (GCM) mixes many such with different collective properties.

Contrasting the Approaches

Building on Mean Field

Other methods build on single independent-particle state

Contrasting the Approaches

Building on Mean Field

Other methods build on single independent-particle state

Contrasting the Approaches

Building on Mean Field

Other methods build on single independent-particle state

Contrasting the Approaches

Building on Mean Field

Contrasting the Approaches

Building on Mean Field

All these methods fit parameters to data directly in heavy nuclei. Not a bad thing, but makes it hard to estimate accuracy when calculating something diffferent from anything you've ever measured!

protons

The Way Forward

Two tracks:

- A serious comprehensive statistical analysis of correlation between predictions for matrix element predictions and for other measured observables, across all models.

Can attempt to assign uncertainty; just getting started and I won't talk about it.

- Improving the calculations through
- incorporating more physics, e.g., combining effects treated by QRPA and GCM.
- restricting phenomenology to basic level -nucleon-nucleon interaction, etc. - and solving full many-body problem from there.

These are well underway.

Problems of QRPA I: Single Mean Field

Some of the nuclei in these decays don't have well defined shape, can't be represented by single mean field.

Robledo et al.: Energy minima at $\beta_{2} \approx \pm .15$

Solid line is actual result; dashed line a symmetric potential for comparison.

Problems of QRPA II: Proton-Neutron Pairing

Method treats proton-neutron pairing, an important physical effect, but not ideally:

Matrix element blows up when mean-field state changes from like-particle pair condensate to proton-neutron pair condensate.

GCM: Many Mean Fields but No Proton-Neutron Pairing

 Basic GCM idea: Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\left\langle\mathrm{Q}_{0}\right\rangle \equiv\left\langle\sum_{i} r_{i}^{2} Y_{i}^{2,0}\right\rangle$.Minimize

$$
\left\langle\mathrm{H}^{\prime}\right\rangle=\langle\mathrm{H}\rangle-\lambda\left\langle\mathrm{Q}_{0}\right\rangle
$$

Then use $\left\langle\mathrm{Q}_{0}\right\rangle$ as a collective coordinate; diagonalize H in space of number- and angular-momentum-projected mean-field states with different values of $\left\langle\mathrm{Q}_{0}\right\rangle$.

Rodríguez and Martinez-Pinedo

GCM: Many Mean Fields but No Proton-Neutron Pairing

 Basic GCM idea: Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\left\langle Q_{0}\right\rangle \equiv\left\langle\sum_{i} r_{i}^{2} Y_{i}^{2,0}\right\rangle$.Minimize

$$
\left\langle\mathrm{H}^{\prime}\right\rangle=\langle\mathrm{H}\rangle-\lambda\left\langle\mathrm{Q}_{0}\right\rangle
$$

Then use $\left\langle Q_{0}\right\rangle$ as a collective coordinate; diagonalize H in space of number- and angular-momentum-projected mean-field states with different values of $\left\langle\mathrm{Q}_{0}\right\rangle$.

Rodríguez and Martinez-Pinedo But the states don't contain proton-neutron pairing correlations.

Soln: Add Proton-Neutron Correlations to GCM

We generalize GCM in a way that avoids wild QRPA behavior.
Constrain pn pairing as well as deformation, i.e. minimize

$$
\frac{\mathrm{H}^{\prime}=\mathrm{H}-\lambda_{\mathrm{Q}}\left\langle\mathrm{Q}_{0}\right\rangle-\lambda_{\mathrm{P}}\left\langle\mathrm{P}_{0}^{\dagger}\right\rangle}{\text { with }}
$$

$$
\mathrm{P}_{0}^{\dagger}=\sum_{\ell} \sqrt{2 \ell+1}\left[\mathrm{a}_{\ell}^{\dagger} a_{\ell}^{\dagger}\right]_{M_{s}=0}^{\mathrm{L}=0, S=1, T=0}
$$

creates spin-1 pn pair
P_{0}^{\dagger} has expectation value zero in unconstrained state, but add states that are constrained to have non-zero values, diagonalize in basis of many such states.

Matrix Element in ${ }^{76} \mathrm{Ge}$

(Realistic value of $g_{p n}$ about $1.5-1.6$.)

This calculation a prototype; sophisticated version coming soon

Next Idea: Eliminate Nucleus-Level Phenomenology

 Ab Initio Shell Model

Partition of Full Hilbert Space

P = valence space
$Q=$ the res \dagger
Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing lowest eigenvalues.

Next Idea: Eliminate Nucleus-Level Phenomenology

 Ab Initio Shell Model

Partition of Full Hilbert Space

$P=$ valence space
$Q=$ the res \dagger
Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing lowest eigenvalues.

Next Idea: Eliminate Nucleus-Level Phenomenology

 Ab Initio Shell Model

Partition of Full Hilbert Space

P = valence space
$Q=$ the res \dagger
Task: Find unitary transformation to make H block-diagonal in P and Q , with $\mathrm{H}_{\text {eff }}$ in P reproducing lowest eigenvalues.

For transition operator \hat{M}, apply same transformation to get $\hat{M}_{\text {eff }}$.

Next Idea: Eliminate Nucleus-Level Phenomenology

 Ab Initio Shell Model

Shell model done here

Procedure

1. Find good $N N$ and $N N N$ interactions by matching to data in NN scattering, He, ..., or QCD.
2. Use Coupled-Clusters methods to get good ab initio ground state for closed-shell nucleus ${ }^{56} \mathrm{Ni}$ (28 protons, 28 neutrons).
3. Use extension of same method for low-lying states in nuclei with $A=57$ and 58 .
4. Do "Lee-Suzuki" mapping of lowest eigenstates with $A=57,58$ onto $f_{5 / 2} \mathrm{pg}_{9 / 2}$ shell, determine shell-model Hamiltonian that reproduces energies of these states.
5. Do the same thing for the double-beta-decay operator.
6. Put more nucleons in the valence shell (20 for ${ }^{76} \mathrm{Ge}$), shut up, and calculate (in the words, allegedly, of Feynman).

$$
\checkmark=\text { done } \quad \checkmark=\text { done in lighter nuclei }
$$

First Step: Interaction in sd Shell

And in p Shell

Finally: "Renormalization of g_{A} "

Forty(?)-year old problem: Single-beta rates, $2 v$ double-beta rates, related observables over-predicted.

Brown \& Wildenthall: Beta-decay strengths in sd shell

Solution: Not Yet Clear

Typical practice: "Renormalize" g_{A} to get correct results. But if g_{A} is renormalized by same amount in $0 v$ decay as in $2 v$ decay (a lot in shell model and IBM), experiments are in trouble; rates go as $\left(g_{A}\right)^{4}$.

Solution: Not Yet Clear

Typical practice: "Renormalize" g_{A} to get correct results. But if g_{A} is renormalized by same amount in $0 v$ decay as in $2 v$ decay (a lot in shell model and IBM), experiments are in trouble; rates go as $\left(g_{A}\right)^{4}$.

Better practice: Understand reasons for over-prediction. In modern language, must be due to

1. Many-body weak currents (from non-nucleonic degrees of freedom), either modeled explicitly as π, ρ exchange, etc., or treated in effective-field theory.
Who's right? The old-school practitioners who say meson-exchange effects are small, or the modern effective-field-theory folk, who say they can be large (about 30% in initial studies)?

Solution: Not Yet Clear

Typical practice: "Renormalize" g_{A} to get correct results. But if g_{A} is renormalized by same amount in $0 v$ decay as in $2 v$ decay (a lot in shell model and IBM), experiments are in trouble; rates go as $\left(g_{A}\right)^{4}$.

Better practice: Understand reasons for over-prediction. In modern language, must be due to

1. Many-body weak currents (from non-nucleonic degrees of freedom), either modeled explicitly as π, ρ exchange, etc., or treated in effective-field theory.
Who's right? The old-school practitioners who say meson-exchange effects are small, or the modern effective-field-theory folk, who say they can be large (about 30% in initial studies)?
2. Truncation of model space, to be fixed, e.g., in ab-initio shell model.

Solution: Not Yet Clear

Typical practice: "Renormalize" g_{A} to get correct results. But if g_{A} is renormalized by same amount in $0 v$ decay as in $2 v$ decay (a lot in shell model and IBM), experiments are in trouble; rates go as $\left(g_{A}\right)^{4}$.

Better practice: Understand reasons for over-prediction. In modern language, must be due to

1. Many-body weak currents (from non-nucleonic degrees of freedom), either modeled explicitly as π, ρ exchange, otc or treated in effective-field theorv

People are attacking both sides of this problem.
(about 30% in initral stuales)?
2. Truncation of model space, to be fixed, e.g., in ab-initio shell model.

So...

We should be able to improve nearly all methods for treating double-beta decay, reduce uncertainty significantly.

So...

We should be able to improve nearly all methods for treating double-beta decay, reduce uncertainty significantly.

Future is dazzling pretty bright.

So...

We should be able to improve nearly all methods for treating double-beta decay, reduce uncertainty significantly.

Future is dazzling pretty bright.

That's all.

