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Neutrinoless Double-Beta Decay

If energetics are right (ordinary
beta decay forbidden)...

and neutrinos are their own
antiparticles...

can observe two neutrons turning
into protons, emitting two
electrons and nothing else.
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Introductory material: 33 decay
is awesome, blah, blah, ...

into protons, emittig§ two




Usefulness of Double-Beta Decay
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If its observed, neutrinos
are their own antiparticles!
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are their own antiparticles!
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But rate also proportional to square of a nuclear matrix element!
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Other Mechanisms

w o w
If neutrinoless decay occurs then _ l@A p
N
BROv)

v's are Majorana, no matter what:

. . . n P
but light neutrinos may not drive the
decay: W, ¢
I
€ " ' N x
xchange of heavy right-handed neutrino I
|
in left-right symmetric model.
n W, p e

For mg =~ 1 TeV, exotic processes can occur with roughly
same rate as light-v exchange. Untangling the two is a long
story; focus here on light Vs since we know they exist.



Form of Nuclear Matrix Element
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Corrections (“forbidden” terms, weak form factors ...) ~ 30%.



Calculating Matrix Elements

Its hard, because
» Relevant nuclei heavy (A > 75) and complicated.
» Never measured; nothing to calibrate to.

b Structure of initial and final nuclear ground states quite
different —> matrix element small and sensitive.
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Calculating Matrix Elements

Its hard, because
» Relevant nuclei heavy (A > 75) and complicated.
» Never measured; nothing to calibrate to.

b Structure of initial and final nuclear ground states quite
different — matrix element small and sensitive.

State of Nuclear-Structure Theory

In light nuclei, theory has made transition from art tfo
science. In heavy nuclei, its now somewhere in between.

Q: Is it enough of a science yet to get accurate double-beta
matrix elements?

A: Its getting there!



But at Present...
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Same level of agreement in 2014. Not so great. And they
may all be missing something.



But at Present...
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Same level of agreement in 2014. Not so great. And they
may all be missing something. What are these models?



All These Models Start with Mean-Field Potential

Goulomb repulsion
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In GCM & QRPA mean-field wave functions can include
“correlations” by deforming or violating particle-number
conservation.



Contrasting the Approaches

Building on Mean Field
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Generator-Coordinate Method (GCM) mixes many such with
different collective properties.
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Other methods build on single independent-particle state

protons neutrons




Contrasting the Approaches
Building on Mean Field /,\

Other methods build on single independent-particle state

| pn|
N\ T

QRPA

QRPA: Large single-particle spaces
in arbitrary single mean field;
simple correlations and excitations
within the space.

protons neutrons




Contrasting the Approaches

Building on Mean Field /,\
(D)
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Other methods build on single independent-particle state
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H# ., Shell Model: Small single-particle

T 11 space in simple spherical mean

protons neutrons




Contrasting the Approaches

Building on Mean Field _
©

Other met

Low-lying
collective
states

Subspace constructed
by S&D pairs

mapping

Gigantic shell model space

s-d boson space

rticle state

protons neutrons

j_ field; arbitrarily complex
-, correlations within the space.

IBM is somewhere in between, mapping matrix elements
from up to two shells but truncating to collective pairs.

cle




Contrasting the Approaches

Building on Mean Field /,\
(D)
@)
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All these methods fit parameters to data directly in
heavy nuclei. Not a bad thing, but makes it hard to
estimate accuracy when calculating something diff-
ferent from anything you've ever measured!

protons neutrons




The Way Forward

Two tracks:

> A serious comprehensive statistical analysis of correlation
between predictions for matrix element predictions and
for other measured observables, across all models.

Can attempt fo assign uncertainty; just getting started
and I won't talk about it.

» Improving the calculations through

» incorporating more physics, e.g., combining effects
treated by QRPA and GCM.

» restricting phenomenology to basic level —
nucleon-nucleon interaction, etc. — and solving full
many-body problem from there.

These are well underway.




Problems of QRPA I: Single Mean Field

Some of the nuclei in these decays dont have well defined
shape, can't be represented by single mean field.

0.0 =—/—r——"71——
2 = deformation

Robledo et al.: Energy Rodriguez and Martinez-Pinedo: Wave

minima at B2 ~ £.15 functions peaked at B, ~ +.2

Solid line is actual result;
dashed line a symmetric
potential for comparison.



Problems of QRPA II: Proton-Neutron Pairing

Method treats proton-neutron pairing, an important physical
effect, but not ideally:

15

76Ge
calculation in two major shells
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Matrix element blows up when mean-field state changes from
like-particle pair condensate to proton-neutron pair condensate.



GCM: Many Mean Fields but No Proton-Neutron Pairing
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Basic GCM idea: Construct set ..
of mean fields by constraining
coordinate(s), e.g. quadrupole
moment (Qo) = (3 ; T2Y20).

Minimize ’

(H') = (H) —=A(Qo)

Then use (Qo) as a collective
coordinate; diagonalize H in
space of number- and
angular-momentum-projected =
mean-field states with oL
different values of (Qp). AT

Rodriguez and Martinez-Pinedo
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Basic GCM idea: Construct set .o« o :
of mean fields by constraining ..~ b AN o
coordinate(s), e.g. quadrupole
moment (Qo) = (3, 12Y20).

Minimize i
(H) = (H) —A({Qo)

Then use (Qo) as a collective
coordinate; diagonalize H in
space of number- and
angular-momentum-projected =
mean-field states with o
different values of (Qp). AT

Rodriguez and Martinez-Pinedo

But the states don't contain proton-neutron pairing correlations.




Soln: Add Proton-Neutron Correlations to GCM
We generalize GCM in a way that avoids wild QRPA behavior.

Constrain pn pairing as well as deformation, i.e. minimize

H' =H—Aq (Qo) — Ap (P})

with

/,P(T)Z 20+ 1 [a;[a;f
¢

creates spin-1 pn pair

} L=0,5=1,T=0
Ms=0

P(T) has expectation value zero in unconstrained state, but add
states that are constrained to have non-zero values,
diagonalize in basis of many such states.



Matrix Element in 7°Ge
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Ordinary GCM
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(Realistic value of g, about 1.5 —1.6.)

This calculation a prototype; sophisticated version coming soon




Next Idea: Eliminate Nucleus-Level Phenomenology
Ab Initio Shell Model

Partition of Full Hilbert Space

P Q
o o P = valence space
P PK[P PHQ Q = the rest
Task: Find unitary transformation
to make H block-diagonal in P
and Q, with Hggs in P reproducing
A AL A lowest eigenvalues.
Q| QHP QHQ

\

Shell model done here
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Next Idea: Eliminate Nucleus-Level Phenomenology
Ab Initio Shell Model
Partition of Full Hilbert Space

P Q
P = valence space
P | Hege Q = the rest
' ' “ n
This is as difficult as solving full problem. But the idea is that
N-body effective operators may not be important for N > 2 or 3. ng
lowest eigenvalues.
Q \ Hefrq 9

For transition operator M, apply
same transformation to get M.

\

Shell model done here



Procedure

1.

Find good NN and NNN interactions by matching to data
in NN scattering, He, ..., or QCD. v/

. Use Coupled-Clusters methods to get good ab initio

ground state for closed-shell nucleus >°Ni (28 protons,
28 neutrons). .

. Use extension of same method for low-lying states in

nuclei with A =57 and 58.

. Do “Lee-Suzuki” mapping of lowest eigenstates with

A = 57,58 onto f5,,pg9,> shell, determine shell-model
Hamiltonian that reproduces energies of these states. .

. Do the same thing for the double-beta-decay operator.

. Put more nucleons in the valence shell (20 for 7°Ge), shut

up, and calculate (in the words, allegedly, of Feynman). .

v’ = done . = done in lighter nuclei



First Step: Interaction in

Energy [MeV]
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O = N W h 01 O N 0O

N W~ 01O

—_

w‘o

!
N WA 01O

I o I 1
—
— 2 =2 — 52t 5/2
— o I y 31
_ Ai o —_— 92t —— gﬁ;
1 T — e} ]
3/2+ L 4t
 jo+] — 2t . .
p— %31;, I — i/z: R iﬁi ?ﬁ+
9/2+" — 4t v
—_ — 3/2t
I oo T 3t 1
1/2+1 - —
T o+ T _— it 1/2+7
— 3/t
5/2+:4 —_— 0t —— ot —— o+ ——— 5/27 —— 5/2t ——— 5/214]
T T T T T
I — 5/2* 5/t 3+ B
7/2+ 5;; = o , — 3t
4t — 3/2" — 72t _— ot
o F o o 52t 3/2t T — 4t ]
o+ — 0t | .
k3 I . o
—_— —
3 —— gt E A E
+ — 3/2+ + _— 2t |
_ g T 2F — 3/2+
R T 52t —— 5/20 —— 52t} B
220 230 240
—— ot —— 0t ——ot § 12" 12t —— Y2t —— ot —— ot —— ot
T K S G K S & K S
SR N SR AN SR AN
o N o S o S



And in p Shell

Energy [MeV]
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Finally: “"Renormalization of g»”

Forty(?)-year old problem: Single-beta rates, 2v double-beta
rates, related observables over-predicted.

Brown & Wildenthall: Beta-decay strengths in sd shell
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Solution: Not Yet Clear

Typical practice: “Renormalize” g to get correct results.
But if ga is renormalized by same amount in Ov decay as in

2v decay (a lot in shell model and IBM), experiments are in
trouble; rates go as (ga)?.
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modern language, must be due to

1. Many-body weak currents (from non-nucleonic degrees
of freedom), either modeled explicitly as m, p exchange,
etc., or treated in effective-field theory.

Whos right? The old-school practitioners who say
meson-exchange effects are small, or the modern
effective-field-theory folk, who say they can be large
(about 30% in initial studies)?
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Solution: Not Yet Clear

Typical practice: “Renormalize” g to get correct results.
But if ga is renormalized by same amount in Ov decay as in

2v decay (a lot in shell model and IBM), experiments are in
trouble; rates go as (ga)?.

Better practice: Understand reasons for over-prediction. In
modern language, must be due to

1. Many-body weak currents (from non-nucleonic degrees
of freedom), either modeled explicitly as m, p exchange,

People are attacking both sides of this problem.

VU

(@Bout 30% T TAifial studies)?

2. Truncation of model space, to be fixed, e.g., in ab-initio
shell model.
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We should be able to improve nearly all methods for treating
double-beta decay, reduce uncertainty significantly.

Future is dezzling pretty bright.

1lat's all.



