Search for Supernova Neutrino Bursts at LVD

G. Bruno¹, W.Fulgione^{1,2}, A.Molinario³, <u>C.Vigorito^{3,4}</u> on behalf of the LVD Collaboration

Istituto Nazionale di Fisica Nucleare

INFN

¹INFN-LNGS L'Aquila, ²INAF-OATo Torino ³INFN Torino, ⁴University of Torino

The Detector Performances

1000 tons liquid scintillator neutrino observatory in operation at INFN Gran Sasso Laboratories since 1992

840 counters are arranged in a compact and modular geometry

Mean Energy Threshold : E_{th}~4 MeV

The Trigger Stability

Quality cuts and the energy threshold $E \ge 10$ MeV considered for this analysis provide trigger stability over the whole monitored period.

Sensitive to Neutrino Burst from a Gravitational Stellar Collapse (GSC) in the Milky Way (D<=25 Kpc) with minimum trigger mass of M>=300 tons

Distribution of delays between filtered triggers over 20 years has been normalized to the average frequency (0.03 Hz) / In agreement with Poisson statistics.

Expected v signal in LVD GSC (a) 10 Kpc

Neutrino interaction	Expected events
$\overline{m{v}}_{ m e}$ + $m{ ho} ightarrow m{e}^+$ + $m{n}$	250
v_{e} + ^{1 2} C \rightarrow ^{1 2} N + e ⁻	
$\overline{v_{e}}$ + ^{1 2} C \rightarrow ^{1 2} B + e ⁺	15
v_i + ¹² C \rightarrow v_i + ¹² C + γ	J
$oldsymbol{v_i}$ + e- $ ightarrow$ $oldsymbol{v_i}$ + e ⁻	10
v_{e} + ⁵ 6 Fe $ ightarrow$ ⁵ 6 Co + e ⁻	
$\overline{\nu}_{o}$ + ⁵⁶ Fe \rightarrow ⁵⁶ Mn + e ⁺	25

The search for supernova v bursts

energy range after µ-like event rejection and quality cuts.

The cluster definition: each possible sequence of $m \ge 2$ events within 100 ms $\leq \Delta t \leq 100$ s time window/ Δt is determined by the first and last event of the cluster.

The cluster imitation frequency:

 $F_{im} = f_{bk}^{2} \cdot \Delta t_{max} \cdot \sum_{k>m} P(k, f_{bk} \cdot \Delta t)$

P is the Poisson probability to have a cluster of multiplicity k being $(f_{bk} \Delta t)$ the mean value and C $\Delta t_{\rm max} = 100 \text{ s.}$

Statistical selection of clusters: the background is under control and it is possible to select clusters below a given imitation frequency F_{im} th (<1/day, <1/week, <1/month).

The data set: all recorded triggers in the 10-100 MeV The v burst candidate: cluster with $F_{im} \leq \frac{1}{100}$ year⁻¹

If there is a positive detection on statistical basis a second level analysis is applied to the selected cluster : event topology, energy and time distribution of pulses are checked.

Results

Tota 73		Tota	Livetime	N. of Cluster		
		7335 days		26914419		
F _{im} th	D	< 1 Day ⁻¹	< 1 week ⁻¹	< 1 month ⁻¹	< 1 year ⁻¹	< 0.01 year
lusters	1	123	165	45	4	0

4 candidates *a* $F_{im}^{th} < 1$ year⁻¹ have been individually checked: they are compatible with background fluctuation.

No evidence for a neutrino burst from a gravitational stellar collapse over the whole monitored period.

Neutrino emission model as **1n** G.Pagliaroli et al. Astroparticle Physics 31 (2009) 163-176

Expected LVD Sensitivity

Temporal delay between clusters selected at different F_{im}; the solid line is for the experimental result, the dotted line is the prediction for a Poisson behaviour of the background.

Detected clusters at $F_{im} < 1/day$. Red dots are 4 clusters whose significance is less than 1/year. No clusters fall above the $F_{im} < 1/100$ years limits.

Conclusions

LVD continuously monitors the whole Galaxy No evidence of v-burst detection on 7335 days

> Upper limit to GSC event 0.11 year⁻¹ (90% c.l.)