# TITUS: An Intermediate Distance Detector for the Tokai-to-Hyper-Kamiokande Neutrino Beam

F. Di Lodovico<sup>2</sup>, D. Hadley<sup>4</sup>, T. Katori<sup>2</sup>, M. Malek<sup>1</sup>, M. Rayner<sup>3</sup>, R. Terri<sup>2</sup> for the TITUS Working Group and the Hyper-Kamiokande Flux & Near Detector Working Group

1. Imperial College London; 2. Queen Mary University of London; 3. University of Geneva; 4. University of Warwick

# Imperial College London

#### Hyper-Kamiokande





Hyper-K<sup>[1]</sup> is a next-generation water Cherenkov detector:

- 1 Mtonne total mass (0.56 Mtonne fiducial)
- Rich physics programme includes: atmospheric v, solar v, supernova v
- Can be used as a far detector for the J-PARC neutrino beam
- See poster (#202) from Hide-Kazu Tanaka for more info on Hyper-K

# TITUS = "Tokai Intermediate Tank with Unoscillated Spectrum"



TITUS is a proposed new near detector for Hyper-K:

- Approx. 2 km from the J-PARC neutrino beam2 ktonne water Cherenkov, with 0.1% Gd-doping
- Partially enclosed by Muon Range Detector (MRD) ≦ 0.2

Designed to reduce systematics at Hyper-K:

- Same target nuclei (H2O)
- Same angle & neutrino energy spectrum
- Many systematics cancel in Far / Near ratio

Gd enhances tagging of v interactions via n capture:

- Neutrino / anti-neutrino discrimination
- Distinguish CCQE from other interaction modes (including Meson Exchange Currents [MEC])
- Final Hyper-K design may also include Gd



Far-to-Near Ratio For Hyper-K and Near Detector Sites

#### **Physics Potential**

TITUS has a wide physics reach, including the following topics:

- Neutron multiplicity measurements
- Ability to distinguish CCQE from other neutrino interactions in beam mode
- Provides important inputs to refine neutrino generator models
- Improves Hyper-K proton decay search sensitivity
- Measure intrinsic ve component of neutrino beam
   Dominant background for ve appearance oscillation analysis
- Cross-section measurements
- Inclusive  $NC\pi^0$  measurement can improve knowledge of  $MA^{RES}$  (see figure)
- ve vs.  $v_{\mu}$  and v vs.  $\overline{v}$  and CCQE vs. CC-inclusive
- Supernova neutrino alarm
- Sterile neutrino searches
- Short-baseline ve appearance search to test LSND / MiniBooNE anomaly
- Compare NC rate at ~2 km and 280 m to look for active neutrino disappearance



Inclusive NCπ<sup>0</sup> Measurement (200 t fiducial mass)

#### Water Cherenkov Simulation & Reconstruction



- Detector sim. with WChSandBox<sup>[2]</sup>
   All results preliminary
- Event display shows photon hits on active area of detector wall
- Photosensor optimisation with:
- Conventional PMTs
- High quantum efficiency PMTs
- LAPPDs<sup>[3]</sup>



Neutral Current  $\pi^0$  interaction

#### **Neutron Multiplicity**



| Table displays sample purities for various selection criteria (Each row sums to 100%) |      |        |              |          |      |                    |
|---------------------------------------------------------------------------------------|------|--------|--------------|----------|------|--------------------|
| Beam Mode & Selection                                                                 | CCQE | CC MEC | <b>CC</b> 1π | CC Other | NC   | 'Wrong-Sign'<br>CC |
| ν <sub>μ</sub> all                                                                    | 36%  | 10%    | 25%          | 18%      | 4%   | 7%                 |
| $\nu_{\mu}$ with $n = 0$ (CCQE-enhanced)                                              |      | 8%     | 9%           | 14%      | 2%   | < 1%               |
| $\nu_{\mu}$ with $n > 0$ (CCQE-depleted)                                              | 22%  | 10%    | 32%          | 20%      | 6%   | 10%                |
| -<br>νμ all                                                                           | 63%  | 7%     | 5%           | 2%       | 3%   | 20%                |
| $\overline{\nu}_{\mu}$ with $n=0$                                                     | 27%  | < 1%   | < 1%         | < 1%     | 10%  | 63%                |
| $\overline{\nu}_{\mu}$ with $n=1$                                                     | 88%  | < 1%   | 1%           | 2%       | < 1% | 8%                 |
| $\overline{\nu}_{\mu}$ with $n > 1$                                                   | 57%  | 13%    | 8%           | 2%       | 2%   | 18%                |

## **Muon Range Detector**

**Charged Current Quasi-Elastic interaction** 

2500

2000

1500

1000

500

stopped in MRD

penetrated MRD

 $E_{v}$  (GeV)

 $E_{v}$  (GeV)

missed MRD

Charge recon. efficiency for  $\mu$  in the MRD

0 1 2 3 4 5 6 7 8 9 10

4000

2000

-4000-

- Muons that escape the water tank enter the MRD
- μ momentum inferred from range within the MRD
- $\bullet$  A 1.5 Tesla magnetic field allows identification of the sign of the  $\mu$  charge:



- Charge-sign measurement can be exploited to obtain  $\mu^+$  vs.  $\mu^-$  discrimination:
- μ from energetic neutrinos can penetrate MRD
   Momentum & sign of charge reconstructed from curvature

#### Future Work

- Photodetector configuration, optimising hybrid of PMTs and LAPPDs
- Event matching between water tank and MRD to improve v /  $\bar{v}$  separation
- ullet Optimisation of CC0 $\pi$  selection for maximum exploitation of Gd potential
- Evaluation of uncertainties at detector level and from cross-section models
- Design error matrix for propagation from TITUS to Hyper-Kamiokande
- Oscillation sensitivity studies (e.g.,  $\delta$ CP, sterile  $\nu$ )

## References

- [1] For more details, please visit: www.hyperk.org
  Proposal (submitted April 2014) available upon request
- [2] Developed by Matt Wetstein for the ANNIE collaboration (arXiv:1402.6411)
- [3] The Large Area Picosecond Photo-Detector (LAPPD) Collaboration For more information, please visit: psec.uchicago.edu
- [4] R. B. Firestone and V. S. Shirley, *Table of Isotopes* (John Wiley, New York, 1996)