

Calorimetric measurement of the ¹⁶³Ho spectrum: from single pixels to arrays

Philipp C.-O. Ranitzsch¹, Holger Dorrer², Christoph E. Duellmann^{3,4,5}, Klaus Eberhardt^{3,5}, Christian Enss¹, Andreas Fleischmann¹, Loredana Gastaldo¹, Clemens Hassel¹, Karl Johnston^{6,7}, Sebastian Kempf¹, Ulli Koester⁸, Tobias Kron⁹, Sven Richter⁹, Fabian Schneider⁹, Thierry Stora⁷, Andreas Tuerler², Mathias Wegner¹, Klaus Wendt⁹

Amplitude Ch 0 [a.u.]

ECHO

Microwave SQUID Multiplexer^[1]

Challenges

- Energy sensitivity degraded compared to 2-stage - Dissipated power inside the cryostat very low dc-SQUID

Energy deposition in absorber magnetic flux change in related temperature sensor

magnetic flux change in associated rf-SQUID

shift of resonance frequency of corresponding resonator

monitoring frequency shift as a change of amplitude/phase

Main Advantages

- Complex room temperature readout electronics Two Coaxes and one HEMT for readout of ~1000 detectors
 - No limitation of signal rise-time

[1] J.A.B. Mates, G.C. Hilton, K.D. Irwin, L.R. Vale, and K.W. Lehnert, Appl. Phys. Lett. 92(2) (2008)

64-Pixels Array with integrated rf-SQUID readout Non-hysteretic rf-SQUIDs ε = 220ħ

Prototype results

Conclusion & Outlook

- first arrays with 64 pixels have been produced
 - characterization of the performance
- ¹⁶³Ho production and purification
- Tests for 4π absorber preparation implantation → alloys

