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Natural radioactivity and *3C(a,n)**O background of
the Daya Bay Reactor Neutrino Experiment

Introduction

The Daya Bay experiment is designed to precisely
measure the neutrino oscillation angle 0,.

With 217 days data, an improved measurement of
sin“20,,=0.090+0.008-0.009 and |AM?| = (2.59+0.19-
0.20) X 10-3eV~ is obtained using anti-neutrino rate and
spectra information.

The poster discusses natural radioactivity in the Daya
Bay low background detector and related 3C(a,n)*O
background.
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Discussion of 227 Ac \

22l Ac is the daughter nuclei of 23U, with a half life time
21.77 years. There is also a cascade decay in 22’ Ac chain: “1°Rn -
-- 2P0 (1.78ms) --- 211Pb WhICh IS Reglon D |n top rlght sllde
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Measured half life tlme Is 1.70ms, con3|stent with predlctlon
The cascade decay mainly exists in Gd doped liquid scintillator,
Indicating it Is induced by the mixing of Gd to the liquid scintillator.
There are two steps to mix Gd into LS:

1) Purification of GdCl; samples,

2) Complexation of Gd and TMHA (3,5,5-trimethylhexanoic acid)
Step 1 mainly removes U, Th, Pa, and step 2 mainly removes Ra.
238 and 232Th chains are removed efficiently by hundred times.
22TAc in 23°U chain are NOT removed at all (first observation).

13C(a,,n)1%0 background \

In a LS or Gd-LS detector, electron anti-neutrino Is detected
via Inversed Beta Decay (IBD), which has a prompt signal from
positron and a delayed signal from neutron capture.

The 13C(a,n)**0 reaction can mimic IBD since it emits an
energetic neutron, and prompt signal is formed by the neutron
scattering on a proton, and delayed signal by neutron capture.
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Neutron yield uncertamty\

Neutron yield uncertainty is contributed £

by: o
1) Cross section uncertainty
2) Uncertainty of o range and energy
deposit density
3) Step lengths used in the integration
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/ Natural radioactivity \

Natural radioactivity are well known as three long life
decay chains: 238U, %3°Th and 23°U, and one long life
isotopes 4°K.

Three decay chains containing o decays are to be studied.

/ Rates of decay chains \

Rates of decay chains are determined with two methods:

1) Use tight selection cuts, correct for the efficiency:.

2) Use loose selection cuts, subtract accidental backgrounds
Results of the two methods are well consistent.
Assumption: the decay chain is under equilibrium.
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Ratio of 22’ Ac and 238U rates can be utilized to estimate purification effects:
1) Assume 22’ Ac and 238U chains are under equilibrium
2) Assume 22’ Ac are not removed in the purification
The mass fraction of 233U and %3°U in the natural is 0.993 and 0.007,
converting to decay rates the ratio Is 21.5:1.
The measured ratio is 0.045:1.

Based on the above assumptions, GdCl, purification removes 233U by
about 480 times.

13C(a,n)t0 rate

The neutron yield is calculated using the following equations:
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There Is no analytic function for cross sections, so numerical
Integration is applied.
Step lengths and o range (right Fig) are simulated with GEANT4

DecayChain Ny,ound ~ Newcited  Niotar ~ Uncertainty
210pop  5.26e-8 4.90e-9  5.75e-8 7.2%
2380 4.34e-7 2.96e-7  7.30e-7 16.9%
232Th  4.49e-7 4.92e-7  9.41e-T 27.7%
22T Ac 4.72e-7 6.18e-7  1.09e-6 25.9%

/ Spectrum uncertainty

Uncertainty sources for spectrum are similar to that for neutron yield.
We also examine one by one, and give a combined error band.
To a certain experiment, alpha rate uncertainty and difference between
data and MC should be considered.
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Cascade decays

Cascade decays are utilized to study decay chain rates.
(1) 238U chain: 2¥Bi --- 214Po (164.3us) --- #1%Po
(2) 232Th chain: %12Bi --- #1?Po (300ns) --- 2%8Po
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210PDy (half life 22.3 years) StUdh

210Pp is the daughter of 222Rn (half life 3.8 days, about 50Bg/m? in the air).

Via two [ decays, %1°Pb decays to %1°Po, which is a 5.3MeV o emitter, and
an important 3C(a,n)®0 background source.

Rate of 21Po decays is determined by fitting to the low energy spectrum,
and it is found that there is accumulation on the surface of acrylic vessel.
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Different AD %1°Po rates are consistent to their exposure time in the
air. For example, AD1 and ADZ2 are near half year while AD3 to
D6 are 2 months

13C(a,n)'%0 spectrum

Background spectrum is consisted of:

1) o Kinetic energy deposit before the reaction

2.1) If neutron scatting with *H, recoil proton energy deposition
2.2) If neutron inelastic scatting with 12C, 4.4MeV de-excited y
3) If 120 is at excited states, de-excited e*e- pair or y
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Steps to make the background spectrum:
1) Record neutron energy and o deposit energy before reaction (left plot)
2) Add the e*e- pair or y from °O de-excited with a proper rate
3) Combine 1) and 2) to a generator and send to MC for simulation

Summary

1) We report the analysis of cascade decays In the natural
radioactivity decay chains, and determine rates of the chains

2) We report the observation of high rate 22’ Ac decay chain in
the Gd-LS detector, and estimate the purification of GdCl,
removes 238U by 480 times

3) We fit the low energy spectrum to get the 41°Po decay rates,
and find It Is accumulated on the surface on acrylic vessel,
and the accumulated rate Is proportional to the exposure
time In air.

4) We calculate the neutron yield from difference decay chains
and generate the background spectrum. e also estimate the
uncertainty of yield and spectrum.
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