

Natural radioactivity and ${}^{13}C(\alpha,n){}^{16}O$ background of the Daya Bay Reactor Neutrino Experiment

Introduction

The Daya Bay experiment is designed to precisely measure the neutrino oscillation angle θ_{13} .

With 217 days data, an improved measurement of $\sin^2 2\theta_{13} = 0.090 + 0.008 - 0.009$ and $|\Delta M^2_{ee}| = (2.59 + 0.19 - 0.009)$ $(0.20) \times 10^{-3} eV^2$ is obtained using anti-neutrino rate and spectra information.

The poster discusses natural radioactivity in the Daya Bay low background detector and related ${}^{13}C(\alpha,n){}^{16}O$ background.

Natural radioactivity

Natural radioactivity are well known as three long life decay chains: ²³⁸U, ²³²Th and ²³⁵U, and one long life isotopes ⁴⁰K.

Three decay chains containing α decays are to be studied.

Cascade decays

Cascade decays are utilized to study decay chain rates. (1) 238 U chain: 214 Bi --- 214 Po (164.3µs) --- 210 Po (2) ²³²Th chain: ²¹²Bi --- ²¹²Po (300ns) --- ²⁰⁸Po

Discussion of ²²⁷Ac

²²⁷Ac is the daughter nuclei of ²³⁵U, with a half life time 21.77 years. There is also a cascade decay in ²²⁷Ac chain: ²¹⁹Rn --- ²¹⁵Po (1.78ms) --- ²¹¹Pb, which is Region D in top right slide.

Measured half life time is 1.70ms, consistent with prediction. The cascade decay mainly exists in Gd doped liquid scintillator, indicating it is induced by the mixing of Gd to the liquid scintillator. There are two steps to mix Gd into LS:

1) Purification of GdCl₃ samples,

2) Complexation of Gd and TMHA (3,5,5-trimethylhexanoic acid) Step 1 mainly removes U, Th, Pa, and step 2 mainly removes Ra. ²³⁸U and ²³²Th chains are removed efficiently by hundred times. ²²⁷Ac in ²³⁵U chain are NOT removed at all (first observation).

Rates of decay chains

Rates of decay chains are determined with two methods: 1) Use tight selection cuts, correct for the efficiency. 2) Use loose selection cuts, subtract accidental backgrounds Results of the two methods are well consistent. Assumption: the decay chain is under equilibrium.

	²³⁸ U	²³² Th	²²⁷ Ac
Bq/g	$4.5 \times e^{-10}$	9.5×e ⁻⁹	$1.0 \times e^{-8}$

Ratio of ²²⁷Ac and ²³⁸U rates can be utilized to estimate purification effects: 1) Assume ²²⁷Ac and ²³⁸U chains are under equilibrium 2) Assume ²²⁷Ac are not removed in the purification The mass fraction of ²³⁸U and ²³⁵U in the natural is 0.993 and 0.007, converting to decay rates the ratio is 21.5:1. The measured ratio is 0.045:1.

Based on the above assumptions, GdCl₃ purification removes ²³⁸U by about 480 times.

²¹⁰Pb (half life 22.3 years) Study

²¹⁰Pb is the daughter of 222 Rn (half life 3.8 days, about 50Bq/m³ in the air). Via two β decays, ²¹⁰Pb decays to ²¹⁰Po, which is a 5.3MeV α emitter, and an important ${}^{13}C(\alpha,n){}^{16}O$ background source.

Rate of ²¹⁰Po decays is determined by fitting to the low energy spectrum, and it is found that there is accumulation on the surface of acrylic vessel.

Different AD ²¹⁰Po rates are consistent to their exposure time in the air. For example, AD1 and AD2 are near half year while AD3 to AD6 are 2 months

$^{13}C(\alpha,n)^{16}O$ background

In a LS or Gd-LS detector, electron anti-neutrino is detected via Inversed Beta Decay (IBD), which has a prompt signal from positron and a delayed signal from neutron capture.

The ${}^{13}C(\alpha,n){}^{16}O$ reaction can mimic IBD since it emits an energetic neutron, and prompt signal is formed by the neutron scattering on a proton, and delayed signal by neutron capture.

$^{13}C(\alpha,n)^{16}O$ rate

The neutron yield is calculated using the following equations:

There is no analytic function for cross sections, so numerical integration is applied.

Step lengths and α range (right Fig) are simulated with GEANT4

DecayChair	nN_{ground}	$N_{excited}$	N_{total}	Uncertainty
^{210}Po	5.26e-8	4.90e-9	5.75e-8	7.2%
^{238}U	4.34e-7	2.96e-7	7.30e-7	16.9%
^{232}Th	4.49e-7	4.92e-7	9.41e-7	27.7%
^{227}Ac	4.72e-7	6.18e-7	1.09e-6	25.9%

$^{13}C(\alpha,n)^{16}O$ spectrum

Background spectrum is consisted of:

1) α kinetic energy deposit before the reaction

2.1) If neutron scatting with ¹H, recoil proton energy deposition 2.2) If neutron inelastic scatting with ${}^{12}C$, 4.4MeV de-excited γ 3) If ¹⁶O is at excited states, de-excited e^+e^- pair or γ

Steps to make the background spectrum:

1) Record neutron energy and α deposit energy before reaction (left plot) 2) Add the e^+e^- pair or γ from ¹⁶O de-excited with a proper rate 3) Combine 1) and 2) to a generator and send to MC for simulation

Neutron yield uncertainty Neutron yield uncertainty is contributed by: 1) Cross section uncertainty 2) Uncertainty of α range and energy

Spectrum uncertainty

Uncertainty sources for spectrum are similar to that for neutron yield. We also examine one by one, and give a combined error band. To a certain experiment, alpha rate uncertainty and difference between data and MC should be considered.

Summary

1) We report the analysis of cascade decays in the natural radioactivity decay chains, and determine rates of the chains 2) We report the observation of high rate ²²⁷Ac decay chain in

Each uncertainty source is examined 1) Neutron yield calculated with difference databases JENDL and EXFOR are compared 2) GEANT and SRIM are utilized to simulate α range and dE/dX (bottom) panel of the lower plot)

3) Different step lengths are tested (middle panel of the lower plot)

Note 1: absolute error of a database is not considered Note 2: a certain experiment should include α rate error

- the Gd-LS detector, and estimate the purification of GdCl₃ removes ²³⁸U by 480 times
- 3) We fit the low energy spectrum to get the ²¹⁰Po decay rates, and find it is accumulated on the surface on acrylic vessel, and the accumulated rate is proportional to the exposure time in air.
- 4) We calculate the neutron yield from difference decay chains and generate the background spectrum. We also estimate the uncertainty of yield and spectrum.

Provided by Zeyuan Yu, IHEP, China <u>yuzy@ihep.ac.cn</u> **On behalf of the Daya Bay Collaboration**