Production and characterization of high-purity natural and enriched ZnMoO₄ crystals

² Università dell'Insubria and Sezione dell'INFN di Milano-Bicocca , 22100 Como (Italy)
 ³ Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine)
 ⁴ ICMCB Bordeaux (France)
 ⁵ Università di Milano-Bicocca e Sezione dell'INFN di Milano Bicocca, I-20126 Milano (Italy)
 ⁶ Nikolaev Institute of Inorganic Chemistry, 630090 Novosibirsk (Russia)
 ⁷ L'Institut d'Astrophysique Spatiale (IAS), Bâtiment 120, 91405 Orsay Campus (France)
 ⁸ Service de Physique des Particules, CEA-Saclay, 91191 Gif sur Yvette (France)
 ⁹ CML Ltd., 630090 Novosibirsk (Russia)

Abstract Scintillating bolometers are promising devices for the future experiments on neutrinoless double beta decay ($0v2\beta$). When the energy absorber in a bolometer scintillates at low temperatures, the simultaneous detection of scintillation light and heat provides a very powerful tool to identify the nature of the interacting particle and therefore to suppress background. A recently developed technique to grow large high quality radiopure zinc molybdate ($ZnMoO_4$) crystal scintillators makes this material advantageous for low temperature bolometric experiments. This is the case for LUMINEU program which aims to perform a pilot experiment on $0v2\beta$ using radiopure ZnMoO4 crystals operated as scintillating bolometers. Growing high quality radiopure crystals is a complex task, since there are no commercially available molybde-num compounds with the required levels of purity and radioactive contamination.

Here we present further progress in deep purification of molybdenum, growing natural and enriched of ZnMoO₄ crystals and new results about their optical, luminescent, thermal and bolometric properties.

Production of ZnMoO ₄ crystals Purification	Crystal growth		
Purification of MoO , by sublimation	Purification by recrystallization from	Low thermal gradient Czochralski technique	
Purification and cristallization were performed at Nikolaev Insti- tute of Inorganic Chemistry (NIIC). To purify molybdenum by su-	Aqueous solution	The ZnMoO4 crystals were grown by the Low Thermal Gradient	
$1 1 \dots \dots$	worybuchum men was purmed by double reerystamzation of am-	Czochralski Technique (LTG Cz) developed at the NIIC.	

blimation for $ZnMoO_4$ crystal growth we have added up to 1% of monium molybdate in high purity zinc molybdate to the MoO₃ prepared for sublimation.

www.cnrs.fr

LUMINEU

 $ZnMoO_4 + WO_3 \rightarrow ZnWO_4 + MoO_3^{\uparrow}$ The sublimates were then annealed in the air atmosphere to obtain yellow color stoichiometric MoO₃.

monium molybdate in aqueous solutions. We've added ZnO to ini-
tiate the precipitation in the basic ammonia solution. After several
hours a precipitation of ZnMoO ₄ occurs and sorbs impurities from
the solution. After separation of the sediment the operation was re-
peated to bind the residuals Fe impurities.

Material	Concentration of impurities (ppm)							
	Na	Mg	Si	K	Ca	Fe	Zn	W
Initial MoO ₃	60	1	60	50	60	8	10	200
Recrystallization from aqueous solutions	30	< 1	30	20	40	6	1000	220
Sublimation and recrystallization from	-	<1	30	10	12	5	500	130
aqueous solutions								
Double sublimation and recrystallization	-	< 1	-	< 10	<10	<5	70	<50
from aqueous solutions								

In this method the temperature gradients in the melt were decreased to a level of about 1 K/cm and evaporation of melt components was strongly suppressed by a special design of the growth cell.

Characterization of ZnMoO₄ crystals

Optical absorption

The measurement was made on a 2.0 mm thick single crystal of $ZnMoO_4$ in a range of light spectra including visible and near infrared wavelengths. In the range of light emittance of $ZnMoO_4$ the thansmission coefficient, T, is about 0.8 and cut-off wavelengths are at 313 nm and 5.13 µm.

10	Г	
		0
0	ō	o
8		0
	-	٥
		0 0
n-1	⊢∘	0 0

Luminescent under X-ray excitation

The luminescence of $ZnMoO_4$ crystal was investigated in the temperature interval 8–290 K under X-ray excitation. A broad band in the visible region with a maximum at 610 nm was observed at room temperature. At 8 K luminescence exibits an emission band with a maximum at 625 nm.

Specific heat measurement

Specific heat measurements were made on a 3x3x2 mm³ single crystal. The specific heat could be approximated for temperatures higher than ~23 K using high-temperature series expansion:

$$C_p \propto 1 + \sum_{i=1}^{4} B_i \left[1 + \left(2\pi \frac{T}{\Theta_D} \right)^2 \right]^{-i}$$

Debye temperature: $\Theta_{D} = 625.1 \text{ K}$ Bernoullii numbers: B1 = 1.9091, B2 = 1.86714B3 = -0.96009, B4 = -0.00907

The assorbtion coefficient α is calculated as $\alpha = -(\log T)x(\ln 10)/t$, where t is the thickness of the crystal and α is in the range of 1.47 to 0.89 cm⁻¹ in the wavelength region from 400 nm to 2 µm.

The absence of a broad assorbtion band around 440 nm shows a low contamination due to Fe⁺²/Fe⁺³.
The refractive index at 650 nm is 1.96 in agreement with the literature.

The light output grows with decreasing temperature, reaches a maximum around 110–140 K and then drops with further cooling. This result is in agreement with the data of previous investigations.

Bolometric Test

•The crystals are transparent to their emitted light

The inset shows Cp/T as a function of T at low temperatures to evidence the absence of any low range order down to 4 K.
Debye temperature measurement was performed for the first time for ZnMoO₄ and it's favorable for bolometric application

The detectors

ZnMoO₄

ZnMoO₄ detectors:

- 2 natural $ZnMoO_4$ about 330g each
- 2 enriched $Zn^{100}MoO_4$ about 60g each
- PTFE provide mechanical coupling with the copper holder
- The temperature read-out is provide by NTD Ge thermistor
- A heater element is used to stabilize the detectors response

Light detectors:

- Hyper-pure Ge slab
- Three PTFE clamps provide mechanical coupling and a

63 g	59 g
-	

	$Zn^{100}MoO_4$	59 g	63 g
	Working Temperature	13.7 mK	13.7 mK
	Signal	$87 \mu V/MeV$	96 μ V/MeV
1	FWHM _{Baseline}	1.4(1) keV	1.8(1) keV
	Light Yield _{γ/β}	1.01(11)	0.93(11)
	τ_{rise} in 0.55-2.65 MeV	9 ms	5.5 ms
	τ_{decay} in 0.55-2.65 MeV	46.3 ms	26.2 ms

Above-ground performances of enriched crystals at CSNSM

7	0	Scatter plot	- 59g Zn ¹⁰⁰ Mo	O ₄ Crystal	
	8		•••••		A CARLES

Energy spectrum - 59g $Zn^{100}MoO_4$ Crystal

weak thermal link towards the copper holder

- The temperature read-out is provide by NTD Ge thermistor
 A heater element is used to stabilize the detectors response
 One side is coated with SiO to increase the collected light
- The detectors are installed in the cryogenic setup in the underground lab of Modane (France) and are ready for data taking.

• The mass content in ¹⁰⁰Mo of these detectors is 81.1 g.

•¹⁰⁰Mo enriched crystals show very good performances as bolometers. In the undroground setup the energy resolution is close to the baseline FWHM.

Conclusions and Perspectives

We present here further improvement in the production and characterization of ZnMoO₄ crystals for LUMINEU program.

- We developed a technique for the production of high quality large mass ZnMoO₄ crystals
- We proved the possibility to use enriched material in large experiments for the search for 0v2β of ¹⁰⁰Mo
- A new bunch of enriched Zn¹⁰⁰MoO₄ crystals with masses of the order of 300-400g is in production at NIIC
- The crystal properties are fully characterized and they are favorable for bolometric experiments
- 2 large natural and enriched ZnMoO₄ scintillating bolometers are now under investigation in the underground laboratory of Modane (France)

References

[] L. Bergé et al., Purification of molybdenum, growth and characterization of medium volume ZnMoO_4 crystals for the LUMINEU program, JINST, in the press [] A.S. Barabash et al., Enriched Zn100MoO 4 scintillating bolometers to search for 0v2β decay of 100Mo with the LUMINEU experiment