MINOS Sensitivity to Non-Standard Interactions (NSI) using v_e Appearance Events

Adam P. Schreckenberger (The University of Texas at Austin), Joseph M. Kiveni (Fermi National Accelerator Laboratory) (On behalf of the MINOS Collaboration)

The MINOS Experiment, Electron Neutrino Appearance, and NSI

- > MINOS is an on-axis, long-baseline neutrino oscillation experiment, studying neutrinos from the FNAL NuMI beam
- > Two functionally identical detectors
 - Near Detector: 0.029 / 1.0 kT fiducial / total mass:
 - Unoscillated neutrino spectrum assumed
 - Used to predict unoscillated result at Far Det.
 - Far Detector: 4.0 / 5.4 kT fiducial / total mass at depth of 705m (2070 mwe):

> MINOS capable of observing $v_{\mu} \rightarrow v_{e}$ oscillation

Observes oscillated neutrino spectrum

- Functional equivalence: cancels out systematic effects such as flux mismodeling and cross-section uncertainties to first order
- **NuMI beamline:** 120 GeV protons from Main Injector collide with graphite target to produce hadrons (mostly pions and kaons)
 - Charged hadrons decay to form muon neutrino beam
 - Magnetic horn focuses particles of specified charge to produce either a **neutrino-mode** or **antineutrino-mode** beam

• Allowed MINOS to place limits on the value of θ_{13} :

$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2}(2\theta_{13}) \sin^{2}(\theta_{23}) \sin^{2}(1.27\Delta m^{2}L/E)$

• MINOS measurement dependent on $sin^2(\theta_{23})$, δ_{CP} , and the mass hierarchy • MINOS 2013 results* offered a first glimpse at δ_{CP}

The impact of non-standard interaction parameters

• NSI parameters introduce changes to the Hamiltonian analogous to standard matter effects

$$H = U_{PMNS} \begin{bmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{bmatrix} U_{PMNS}^{\dagger} + \sqrt{2}G_F n_e \begin{bmatrix} 1 + \epsilon_{ee} & \epsilon_{e\mu} & \epsilon_{e\tau} \\ \epsilon_{e\mu}^{\star} & \epsilon_{\mu\mu} & \epsilon_{\mu\tau} \\ \epsilon_{e\tau}^{\star} & \epsilon_{\mu\tau}^{\star} & \epsilon_{\tau\tau} \end{bmatrix}$$

- Represents physics beyond the Standard Model
- $v_{\mu} \rightarrow v_{e}$ channel is sensitive to the $\varepsilon_{e\tau}$, $\delta_{e\tau} + \delta_{CP}$ parameter space

• MINOS is sensitive to new physics!

* Electron neutrino and antineutrino appearance in the full MINOS data sample, P. Adamson et al. (MINOS), Phys. Rev. Lett. 110 (2013) 171801, arXiv:1108.0015.

The MINOS Analysis

> Implementation of NSI functions into appearance analysis framework

- Oscillation probability functions with NSI parameters incorporated
 - Migrated from channel-by-channel approximation to direct Hamiltonian probability calculation

Validation and Sensitivities

- Validation of the oscillation framework
 - Reproduced upper 90% C.L. $sin^2(2\theta_{13})$ sensitivity contour with new oscillation framework and NSI parameters defined as zero as consistency check
- Log-likelihood 2D grid search functions introduced to perform sweep over $\varepsilon_{e\tau}$, $\delta_{e\tau}$ + δ_{CP} parameter space

- Make use of the Library Event Matching selector from the 2013 analysis to select events
 - Simulate library of 20M Signal + 30M Neutral Current Far Det. MC events • Two separate libraries / selectors for neutrino and antineutrino
 - Compare candidate event to library and select a list of 50 best matches
 - Feed information from these best matches into a neural network discriminant
 - LEM uses raw hit information to avoid losses from variable construction

Validation of the fitting framework

- To verify performance of the NSI framework, two sets of mock data were generated:
 - Prediction made with $\varepsilon_{e\tau} = 1.0$, $\delta_{e\tau} = \delta_{CP} = 0.0$
 - Statistical fluctuations added to the $\varepsilon_{e\tau} = 1.0$, $\delta_{e\tau} = \delta_{CP} = 0.0$ prediction
- Chosen best fit point contained in both tests, and marginal shifts in contour shape

- > Monte Carlo driven sensitivities
- 90% C.L. contours (-2 Δ InL = 4.61) shown for each mass hierarchy
- Marginalized over four values of δ_{CP} with fixed set of standard oscillation parameters assumed

> Make the Far Detector Prediction

- Apply LEM selection to Near Detector Data
- Use a data-based algorithm to break up the various background selections
 - Different beam kinematics and oscillation for each background type
- Use the Far/Near ratios from MC to turn each component to a Far Detector **Prediction:**

 $\operatorname{Far}_{\alpha}^{\operatorname{Predicted}}(n) = \operatorname{Near}_{\alpha}^{\operatorname{Data}}(n) \frac{\operatorname{Far}_{\alpha}^{\operatorname{MC}}(n)}{\operatorname{Near}^{\operatorname{MC}}(n)}$

- Perform a shape fit of the combined neutrino + antineutrino data or Monte Carlo using the NSI oscillation framework
 - Fit is performed over 3 bins of the selection variable and 5 bins of reconstructed energy
 - Input from the Far Detector prediction generates preliminary sensitivities
 - Input from the MINOS data produces limits upon the parameter space

Results

- 90% C.L. contours (-2 Δ InL = 4.61) produced from the MINOS appearance data for each neutrino mass hierarchy
- Marginalized over eight values of δ_{CP} with fixed set of oscillation parameters assumed

Parameter | Value θ_{12} 0.600 θ_{13} 0.159 θ_{23} 0.7857.59e-5 Δm_2^2 $|\Delta m_3^2|$ 2.43e-3

Parameter

 θ_{12}

 θ_{13}

 θ_{23}

 Δm_{21}^2

 Δm_2^2

Value

0.600

0.159

0.785

7.59e-5

2.43e-3

