

I. Introduction

Beta Decay Experiments

 $^{3}\mathrm{H} \rightarrow ^{3}\mathrm{He} + e^{-} + \overline{\nu}_{e}$

- Tritium beta decay experiments provide a direct measurement of the neutrino mass.
- Independent of the Dirac / Majorana nature of neutrinos and of cosmological models
- Method: Measure the shape for the beta spectrum near the endpoint.

$\frac{dN}{LT} \propto \sqrt{(E_0 - E)^2 - m_{\nu}^2}$	$m_{\nu} = $	$\sum_{i} U_{ei} ^2 m$
$dE \propto V^{(L_0 - L)} m_{\nu}$	$\gamma_j \qquad \qquad$	$-i \circ ei $ m

Can we push further?

- KATRIN can see or place a limit on the mass at 200 meV (90% CL).
- Any future experiment needs to be able to (a) have a better scaling law for increasing the source mass and (b) improve its energy resolution.
- We propose a new approach: use a measurement of the electron cyclotron radiation as a means to measure the electron energy in a non-destructive way.

II. Radio Frequency (RF) Measurement

The Concept

- Enclosed volume of ³H.
- In a uniform magnetic field .
- Decay electrons spiral around the magnetic field lines
- Cyclotron radiation is detected by sensitive microwave antennas

$$\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K + m_e}$$

Towards a Neutrino Mass Measurement: the Project 8 Experiment

Benjamin LaRoque, UC Santa Barbara, Santa Barbara, CA Noah Oblath, MIT, Cambridge, MA Brent Van Devender, PNNL, Richland, WA

for the Project 8 Collaboration

Jп					Energy	half-life
b 5/2-					909	86.2 days
	347	338		900		
	61%	30%		6%		
(3/2-) -		,			— 571	
5/2					562	
	520	530	553			
\backslash	45%	30%	16%			
						1 0 0 1
1/2	IC 3	2.1	,	()	41.5	1.83 hours
7/2+ -	IC 9	.4 🗸			— 9.4	154 ns
9/2+ -					— 0	stable

Triggered Data

- Tektronix Realtime Spectrum Analyzer performs FFT calculations in real time
- Frequency mask trigger acquires time_ domain data records for signals that exceed the threshold
- Background rate: 0 / s / MHz

Atomic Tritium Source

- Solenoidal uniform field for electron cyclotron motion
- Pinch coils to reflect electrons • Ioffe conductors to reflect radially moving atoms

Larger Volumes

- Better statistics in the tail of the tritium spectrum
- Must ensure magnetic field uniformity @ 10⁻⁵ over the active volume
- Tritium Measurement
- First attempt will aim for a few_eV mass limit

usters identified in the analysis, vertically offset for clarity

VI. Future Directions

- Project 8 is supported by:

- From T. Bergeman, G. Erez, and H. J. Metcalf, Phys. Rev. A 35 1535 (1987)

Pacific Northwest

