

Supernova Early Warning in the Daya Bay Reactor Neutrino Experiment

Hanyu Wei for the Daya Bay collaboration Department of Engineering Physics, Tsinghua University, Beijing, China

				Ling Au
Overburden (m.w.e)	250	265	860	~1200m Ling Ao
Muon Rate (Hz/m ²)	1.16	0.86	0.054	Reactor
Reactor IBD rate (Hz/AD)	0.013	0.012	0.0015	Daya Bay reactors 6 × 2.9 GW _t

Daya Bay is online looking for increases in multi-AD signals in a 10s-timewindow with 2(8) MeV online energy threshold.

A datagram due to a packet types including supernova online trigger date time, duration, significance level, number of signals etc. is transferred to **SNEWS server with ~3 seconds time latency.**

Highlight

- ✓ Get access to all raw data and make a simple reconstruction.
- ✓ Trigger decision is issued from a prompt analysis of the candidate distribution in all the ADs and the experimental halls.
- ✓ In order to exclude any unexpected triggers in one detector or experimental hall, an additional uniformity cut based on a chi-square assuming a uniform multi-AD candidate distribution is applied. This results in a <1% detection probability loss for supernova explosions.
- \checkmark A method for background combination rate prediction has been studied so as to set the trigger cut.

Aug. 8, 2013: The supernova online trigger system was official installed. Dec. 27, 2013: Communicate with SNEWS for debugging and testing. Feb. 21, 2014: Real test with normal trigger threshold.

SNv Selection and Trigger Cut Setting

Expected trigger rate [Hz] of the combination [for background false alarm control] Step 1: List of combination cases ordered by occurrence probability for sliding 10s time window [Background only]

Step 2: Calculate the accumulated probability for each combination based on Step 1 summing up the combinations with lower occurrence probability

 \checkmark Every 1s count the SNv candidates of previous 10s time window for each AD, thus form a combination, e.g. 1-0-1-1-0-0-0 in which the numbers denote the the number of candidates from AD1 to AD8.

✓ Powerful and prompt rejection to muon-induced fast neutron background than a single site or single detector

Green Vertical Line: Start to communicate with SNEWS for debugging and testing. Black Vertical Line: Real Test with normal trigger threshold.

June 2-7, 2014, Boston, U.S.A

JEUTRINO

Offline analysis and some shift log files pin down the two abnormal triggers. [online energy reconstruction abnormal & unusual electronic spike]

> **Contact:** weihy07@mails.tsinghua.edu.cn Made by Hanyu Wei, Tsinghua University

Trigger Number