

Energy spectrum fit

- Compares rate and prompt spectrum shape of data and prediction.
- Yields most precise measurement of θ_{13} from Double Chooz.

BACKGROUND MODEL

- Accidental coincidences: $0.070 \pm 0.005 \,\mathrm{d}^{-1}$
- Fast neutrons + stopping muons: 0.67 ± 0.20 d⁻¹
- Cosmogenic ⁹Li + ⁸He: 0.97^{+0.41}-0.16 **d**⁻¹
- Background rates are constrained in fit, particularly **for** ⁹Li + ⁸He.
- Reactor-off measurement (see "Reactor-Off" section, bottom right) included as constraint on total background rates.

SYSTEMATIC ERRORS

- Detection efficiency uncertainty: 0.63% signal normalization
- **MC energy scale**, modeled as $E_{corrected} = a + bE_{MC} + cE_{MC}^2$, covering uncertainties in energy scale nonlinearity, instability over time, and non-uniformity over detector volume. Coefficients a,b, and c are nuisance parameters in fit.

RESULTS

$\sin^2 2\theta_{13} = 0.090^{+0.033}_{-0.028}$

Fast n + stopping µ: $0.56 \pm 0.04 \text{ d}^{-1}$ ⁹Li + ⁸He: $0.80^{+0.15}_{-0.13}$ d⁻¹ $\chi^2/d.o.f = 51.4/40$

 Background-subtracted data (black points, with) statistical error bars) superimposed upon best-fit (red line) and no-oscillation (blue dashed line) signal, with ystematic errors in each bin (gold bands). **Top:** prompt energy spectrum. Center: ratio of data to prediction. Bottom: difference between data and prediction.

Hydrogen capture analysis

MOTIVATION

- ► Higher signal statistics (≈2×) and largely independent v_e → systematics with respect to Gd capture analysis.
- Important cross check of Gd capture analysis.
- Combination of Gd and H analyses yields best constraint on θ_{13} .
- ▶ First H results published [1] and Gd+H results presented in 2013.

OUTLOOK

- ▶ H capture analysis of current dataset in progress ($\approx 2 \times$ statistics of published analysis).
- Developing powerful new background rejection methods, especially for accidentals.

New results and future capabilities of the **Double Chooz reactor antineutrino experiment**

Rachel Carr,¹ Sebastian Lucht,² and Pau Novella³ for the Double Chooz collaboration ¹Columbia University, New York, NY, USA; ²RWTH Aachen University, Aachen, Germany; ³APC/CNRS, Paris, France

The Double Chooz Experiment

sin²20,, = 0.0

Lithium-9 + Fast neutron

DC-III (n-G

8 10 12

Visible Energy (MeV)

Livetime

	ิล
on + best-fit backgrounds	Ħ
	Ē
090 at $\Delta m^2 = 0.00244 \text{ eV}^2$	H
Helium-8	
ns + stopping muons	E
-	
-	
ad) Preliminary	
: 467.90 days	
27777777777777777777777777777777	
<u>X X I V X I X I X I X I X I X I X I X I </u>	4
14 16 18 2	2(

A Prompt energy of inverse beta decay candidates (black points with statistical error bars), overlaid on stacked histograms of best-fit backgrounds plus nooscillation signal (blue dashed line) and best-fit backgrounds plus best-fit signal (red line).

17358 inverse beta decay candidates, with $N_p \varepsilon P_{th}(t)$ selection optimized for neutron capture on Gd $\mathcal{N}_{\nu}^{exp}(E,t) =$ • Mean energy per fission from verage Rate: 37.1±0.3 day Mean cross section detailed simulation of core evolution per fission 241Pu 238U 239Pu 239Pu 235U See [3] for more details. 50 100 150 200 250 300 350 40

Determination of the detection systematics in the Double Chooz experiment Reactor antineutrino detection in Double Chooz: New techniques for backgrounds ► The visible energy of Double Chooz

Future precision

• Projected Double Chooz precision from the energy spectrum fit. Blue plack) curves use systematics, live-to-calendar time ratio, and far detector packgrounds from present analysis (previous Gd-based analysis [2]); near letector backgrounds are estimated from measured muon flux. We assume 0.2% detection efficiency uncertainty and 0.1% reactor flux uncertainty is uncorrelated between detectors. Shaded blue region represents potential future precision, depending on reduction of systematic errors.

Further information on dedicated posters:

 Neutrino directionality measurement with Double Chooz Observation of ortho-positronium formation in Double Chooz Status of the Double Chooz detectors

Now significantly more sensitive than in previous Gd-based analysis [2]. Near detector will sharply increase precision.

Potential Gd-based precision reaches 0.01. Including H capture data will increase precision beyond levels shown in plot.

Reactor power fit

▲ Observed rate of inverse beta decay candidates as a function of rate expected with no oscillation (black points, with statistical errors) superimposed on best fit (dashed blue line, with systematic error band). Fit includes reactor-off data. Also shown: the null hypothesis of observed rate equal to expected rate (black dotted line).

RESULTS

Using only reactor-on data: $\sin^2 2\theta_{13} = 0.090 \pm 0.052$ Background rate = $1.57 \pm 0.86 d^{-1}$

Also including reactor-off data: $\sin^2 2\theta_{13} = 0.059^{+0.038}_{-0.039}$ Background rate = 0.90^{+0.42}-0.35 d⁻¹

The best fit to $sin^2 2\theta_{13}$ and total background rate using reactor-on data only (open star) and also including reactor-off data (filled star) with 68.3%, 95.5%, and 99.7% CL contours for each.

Compares observed and predicted rate at different reactor powers. • Provides a background-model-independent measurement of θ_{13} .

FIT PROCEDURE

- θ_{13} and total background rate are determined simultaneously by comparing expected and observed rates for different reactor power conditions.
- Does not use *a priori* background model.
- Performed using only reactor-on data or also including reactor-off data for improved background constraint (see "Reactor-Off" section below).

SYSTEMATIC ERRORS

- Involves only normalization uncertainties:
- Reactor flux uncertainty (~1.7%)
- Detection efficiency uncertainty (0.63%)
- Uncertainty on rate of reactor-off residual neutrinos (30% of predicted rate)

UNIQUE OPPORTUNITY

- Only reactor antineutrino experiment with opportunities to take data when all reactors are off.
- Serves as background constraint in oscillation fits.

DATA COLLECTED

- 7.23 live days of reactor-off data
- 7 candidates passing signal selection cuts
- After subtracting residual reactor antineutrinos, yields total background rate of $0.76 \pm 0.37 d^{-1}$, consistent within 2σ with background model (1.57^{+0.42}_{-0.18} d⁻¹).