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▶  Compares rate and prompt spectrum shape of data and prediction.
▶  Yields most precise measurement of θ13 from Double Chooz.

p	  	  Prompt energy of inverse beta decay candidates 
(black points with statistical error bars), overlaid on 
stacked histograms of best-fit backgrounds plus no-
oscillation signal (blue dashed line) and best-fit 
backgrounds plus best-fit signal (red line).	  

Hydrogen capture analysis

OUTLOOK
 

▶  H capture analysis of current dataset in progress (≈2× statistics of published analysis). 
▶  Developing powerful new background rejection methods, especially for accidentals. 

REACTOR FLUX PREDICTION CURRENT DATASET
SYSTEMATIC ERRORS
 

▶  Reactor flux uncertainty:  1.7% signal normalization and shape 
▶  Detection efficiency uncertainty:  0.63% signal normalization
▶  MC energy scale, modeled as Ecorrected= a + bEMC + cEMC

2, covering uncertainties in energy scale nonlinearity, 
instability over time, and non-uniformity over detector volume. Coefficients a,b, and c are nuisance parameters in fit. 

▶  Determination of the detection systematics in the Double Chooz experiment 
▶  Reactor antineutrino detection in Double Chooz: New techniques for backgrounds 
▶  The visible energy of Double Chooz 

▶  Neutrino directionality measurement with Double Chooz 
▶  Observation of ortho-positronium formation in Double Chooz 
▶  Status of the Double Chooz detectors 

NEAR DETECTOR
Will begin operation in
Fall 2014
Baseline: ~400 m 
Overburden: 120 mwe 

FAR DETECTOR
Operating since April 2011 
Baseline: ~1050 m   Overburden: 300 mwe 

▶  650 days of data, roughly 2× previous analysis 
▶  Total live-time: 467.90 days
▶  17358 inverse beta decay candidates, with 

selection optimized for neutron capture on Gd 

Further information on dedicated posters:

▶  Compares observed and predicted rate at different reactor powers.
▶  Provides a background-model-independent measurement of θ13.

u	  	  The best fit to sin22θ13 and total background 
rate using reactor-on data only (open star) and 
also including reactor-off data (filled star) with 
68.3%, 95.5%, and 99.7% CL contours for each. 

RESULTS


Using only reactor-on data:

sin22θ13 = 0.090 ± 0.052
Background rate = 1.57 ± 0.86 d-1

 
Also including reactor-off data:

sin22θ13 = 0.059+0.038
-0.039

Background rate = 0.90+0.42
-0.35 d-1 

SYSTEMATIC ERRORS 
 
Involves only normalization uncertainties: 
▶  Reactor flux uncertainty (~1.7%) 
▶  Detection efficiency uncertainty (0.63%) 
▶  Uncertainty on rate of reactor-off residual 

neutrinos (30% of predicted rate)  

UNIQUE OPPORTUNITY


▶  Only reactor antineutrino experiment with 
opportunities to take data when all reactors are off. 

▶  Serves as background constraint in oscillation fits. 

DATA COLLECTED 
 

▶  7.23 live days of reactor-off data 
▶  7 candidates passing signal selection cuts 
▶  After subtracting residual reactor antineutrinos, yields 

total background rate of 0.76 ± 0.37 d-1, consistent 
within 2σ with background model (1.57+0.42

-0.18 d-1). 

p	  	  Reactor-off data (black points with 
statistical errors) overlaid on 
background and residual reactor 
antineutrino prediction.	  

FIT PROCEDURE
 
▶  θ13 and total background rate are 

determined simultaneously by comparing 
expected and observed rates for different 
reactor power conditions.

▶  Does not use a priori background model. 

▶  Performed using only reactor-on data or 
also including reactor-off data for 
improved background constraint (see 
“Reactor-Off” section below). 

 

p	  	  Observed rate of inverse beta decay candidates 
as a function of rate expected with no oscillation 
(black points, with statistical errors) superimposed 
on best fit (dashed blue line, with systematic error 
band). Fit includes reactor-off data. Also shown: the 
null hypothesis of observed rate equal to expected 
rate (black dotted line).	  
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u	  	  	  	  	  Mean energy per fission from  
     detailed simulation of core evolution 

u	  	  	  	  	  	  Pth extracted from reactor data 

u	  	  	  	  Mean cross section 
    per fission 

u	  	  	  	  Normalization 
    from Bugey4 data 

See [3] for 
more details.	  
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t	  	  Background-subtracted data (black points, with 
statistical error bars) superimposed upon best-fit (red 
line) and no-oscillation (blue dashed line) signal, with 
systematic errors in each bin (gold bands). Top: prompt 
energy spectrum. Center: ratio of data to prediction. 
Bottom: difference between data and prediction.	  

RESULTS


sin22θ13 = 0.090+0.033
-0.028

 


Fast n + stopping μ:  0.56 ± 0.04 d-1 
9Li + 8He:  0.80+0.15

-0.13 d-1        

χ2/d.o.f  =  51.4/40 
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t	  	  Projected Double Chooz precision from the energy spectrum fit. Blue 
(black) curves use systematics, live-to-calendar time ratio, and far detector 
backgrounds from present analysis (previous Gd-based analysis [2]); near 
detector backgrounds are estimated from measured muon flux. We assume 
0.2% detection efficiency uncertainty and 0.1% reactor flux uncertainty is 
uncorrelated between detectors. Shaded blue region represents potential 
future precision, depending on reduction of systematic errors.	  

▶  Now significantly more sensitive than in previous 
Gd-based analysis [2]. 

▶  Near detector will sharply increase precision. 
▶  Potential Gd-based precision reaches 0.01.
▶  Including H capture data will increase precision 

beyond levels shown in plot. 

BACKGROUND MODEL
 

▶  Accidental coincidences: 
0.070 ± 0.005 d-1 

▶  Fast neutrons + stopping muons: 
0.67 ± 0.20 d-1 

▶  Cosmogenic 9Li + 8He:   
0.97+0.41

-0.16 d-1 
 

▶  Background rates are constrained in fit, 
particularly for 9Li + 8He. 

▶  Reactor-off measurement (see "Reactor-
Off" section, bottom right) included as 
constraint on total background rates. 
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MOTIVATION


▶  Higher signal statistics (≈2×) and largely independent        
systematics with respect to Gd capture analysis. 

▶  Important cross check of Gd capture analysis. 
▶  Combination of Gd and H analyses yields best constraint on θ13.
▶  First H results published [1] and Gd+H results presented in 2013. 


