

The ²⁴¹Am-¹³C Calibration Source Induced **Background at the Daya Bay Experiment**

Gaosong Li, Shanghai Jiao Tong University on behalf of the Daya Bay Collaboration

II. Formation of Correlated Background

- 3 Automated Calibration Units (ACU) on top of each Anti-neutrino Detector (AD)
- One ²⁴¹Am-¹³C in each ACU
- Neutrons from ²⁴¹Am-¹³C inelastic scattering and then being captured mimics the temporally correlated Inverse Beta Decay (IBD) signal

²⁴¹Am-¹³C Neutron

- Energy (keV)
- Low rate (~0.7Hz) neutron calibration source via ¹³C(α , n)
- Keep accidental background at the far site below 5%
- α energy attenuated to below 5.13MeV with 1um thick Au foil \rightarrow Ground State (G.S.) neutron emission only (~4MeV kinetic energy on average), completely remove correlated n-γ emission

Dominant correlated background at the far site!

III. Method to Determine Correlated Background

IV. Constrain Systematic Uncertainty with In-situ Benchmark Experiment

A ~60Hz ²⁴¹Am-¹³C source (80 times stronger than regular ones) with the same design deployed during summer 2012

E [MeV]

- Measure single neutron like (n-like) rate R_{single} from data
- Predict correlated rate R_{corr} using \bullet

$$R_{corr} = \underline{Yield} \cdot R_{singl}$$

Ratio of R_{corr} over R_{single} based on MC, constrained by benchmark measurement.

V. Evaluation of Uncertainty

Strong AmC	R_{sinale} (Hz)	R_{corr} (/day)	Yield
Data	0.48	60	$(1.5 \pm 0.3) \times 10^{-3}$
\mathbf{MC}	0.34	35	$(1.2 \pm 0.1) \times 10^{-3}$

30% global uncertainty for *Yield*: 20% syst. + 20% stat.

5Me

 Direct observation of correlated events! Good agreement of both single n-like and prompt spectrum of correlated events between data and MC!

E [MeV]

VI. Far Site Background Reduction

- subtracting events at the bottom half of the detector from the top half
- 30% uncertainty for R_{single} to cover AD by AD variations

Background shape is based on parameterization of measured strong AmC spectrum by

$$f = p_0 \cdot e^{-\frac{E}{p_1}}$$

- **15%** p_1 uncertainty to encapsulate all possible shape variations
- *Yield,* together with *R*_{single}, determines **45%** global rate uncertainty for p_0

Contact: Gaosong Li, E-mail: lgs1029@sjtu.edu.cn

- Removed ²⁴¹Am-¹³C from off-center ACUs on all 4 far site ADs in summer 2012
- 80% decrease in ²⁴¹Am-¹³C induced single nlike rate after summer 2012 (8AD period)

E

Correlated background decreased by the same level accordingly

01/Jah/12 01/Jub/12 31/Dec/12 02/Jub/15				rar sita				
AmC background level	4D1	ΔD2	4D3	4D8	A D4	AD5	AD6	AD7
relative to IBD signal	ADI	AD2	AD3	ADO	AD4	AD5	AD0	ADT
Before removal (%)	0.04 ± 0.02	0.04 ± 0.02	0.05 ± 0.02	-	0.30 ± 0.14	0.29 ± 0.13	0.29 ± 0.13	-
After removal (%)	0.03 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.04 ± 0.02	0.08 ± 0.04	0.05 ± 0.02	0.05 ± 0.02	0.09 ± 0.04

VII. Summary

- ²⁴¹Am-¹³C background rate and shape at Daya Bay are estimated and constrained based on real data
- ²⁴¹Am-¹³C background in 8AD period is largely reduced and is no longer the dominant correlated background at the far site
- Improved precision of oscillation parameter measurement