MicroBooNE

- The MicroBooNE detector will be the largest *Liquid Argon Time Projection Chamber* (LArTPC) operating in the United States, US.
- Main motivation for building MicroBooNE is the investigation of the MiniBooNE low-energy excess
- Nonetheless, MicroBooNE will also:
 - Perform neutrino cross-section measurements on argon
 - Study the background relevant for proton decay in LArTPCs
 - And, of course, further advance the LArTPC technology
- Additionally, it could contribute to more exotic searches
 - Neutrinos from Supernovae explosions
 - Burst neutrinos

Experimental layout

• MicroBooNE, just like MiniBooNE, will be installed along the *Booster Neutrino Beam* (BNB) at Fermi National Laboratory.

- protons to a dev
- Placed at a distance of ~470 m from the proton target, in the Liquid Argon Test Facility (LArTF).
- It is will start data taking in the end of 2014 and run for 2 3 years in the neutrino mode accumulating 6.6 10²⁰ POT.

The MicroBooNE detector

Detection technique(s)

- Ionization electrons drifted along macroscopic distances (2.5 m, 1.6 ms)
- Scintillation photons (a few ns)

Characteristics

- Three planes of wires (3mm pitch)
- A collection plane at 0° from vertical
- Two induction planes at ±60°
- Optical system of 32 8' cryogenic
 PMTs and 4 light guide prototypes
- Excellent energy resolution
- Robust tracking and PID capabilities

10.4 m × 2.5 m × 2.3 m Uniform E field, 500 V/cm 170 tons of purified LAr (83 m³ of active volume) Measuring particle momenta via Multiple Coulomb Scattering in the MicroBooNE Time Projection Chamber

Leonidas N. Kalousis (Virginia Tech) for the MicroBooNE Collaboration

A maximum likelihood technique

Basic algorithm:

- -Break up the particle track in segments of equal length (Δs)
- -Find the direction (in zy and zx) of each segment
- -Calculate the angular deflection ($\Delta heta$) for two segments separated by ℓ

- –Say that you focus on the i-th and j-th segments, $\Delta\theta_{ii} = \theta_i \theta_i$
- –The probability to measure $\Delta\theta_{ii}$ between i and j is:

$$f_{ij} = f(\Delta \theta_{ij}, 0.0, \sigma_{ij})$$

Find E_0 that maximizes:

$$f(x, Q, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-Q)^2}{2\sigma^2}}$$
 $\mathscr{L}(E_0) = \prod_{(i,j)} f_{ij}$

- $-\sigma_{ii}$ depends on the initial energy E_0 (momentum) since,
- –The energy at the i-th segment of the track can be found using the information on the wires, $E_i = E_0 \Delta E_i$

Detector resolution:

 $\sigma_{ij} = \sqrt{\theta_0^2 + \delta\theta_0^2}$

- –The angular deflections ($\Delta\theta_{ii}$) are *smeared*
- by the intrinsic detector resolution (measurement errors)
- $\cdot \theta_0$ given by the Highland formula
- $\delta\theta_0$ corresponds to the measurement uncertainties

-The likelihood becomes a function of both E_0 and $\delta\vartheta_0$

- Measure $\delta\vartheta_0$ in situ, or estimate it through Monte-Carlo
- Fit simultaneously E_0 and $\delta\vartheta_0$

Multiple Coulomb Scattering

- Whenever a particle is passing through matter it suffers a large number of small angle scatters
- Coulomb interactions with (mainly) atomic nuclei
 - Large number of interactions, stochastic process

: material thickness (cm)

 X_0 : radiation length (cm)

References

J. Beringer et al., Phys. Rev. D 86 (2012) 010001

H. A. Bethe, Phys. Rev. 89 (1953) 1256

Why Multiple Coulomb Scattering?

- Calorimetric information (wires) can be used to measure particle energy (and thus momentum) in MicroBooNE
- Adequate technique for fully contained events
- Excellent resolution, 2% at 1 GeV
- Fails when the particle exits the TPC (partially contained events)
- In the case of partially contained events, momentum and energy can be determined by means of *Multiple Coulomb Scattering* (MCS)
- A technique employed within neutrino physics by DONUT, OPERA, MACRO and ICARUS
- In the MicroBooNE detector, a large number of charged current interactions will have a muon escaping the TPC
- No magnetic field or muon range detectors
- These events can be reconstructed using MCS

Results

- This technique has been applied to Monte-Carlo muons
 - Particle tracks taken from Monte-Carlo truth information, $\delta \vartheta_0 = 0$
- Muons simulated upstream the MicroBooNE LArTPC with momenta between 0.5 to 5.0 GeV/c
- Note though that the algorithm probably can not be used above 2.5 3
 GeV/c due to the measurement errors

