## Measuring neutrino-nucleus interactions with $\text{MINER}\nu\text{A}$

Philip Rodrigues

University of Rochester

June 2, 2014

# Understanding few-GeV neutrino interactions with nuclei is vital for precision oscillation measurements



Understanding neutrino interactions requires understanding complex strongly-bound systems



#### Models currently used by experiments do not agree with recent data



MiniBooNE  $\nu_{\mu} + CH_2 \rightarrow \mu^- + 0\pi$ 









# The MINER $\nu$ A detector provides a fine-grained view of neutrino-nucleus interactions



$$\sigma_i = \frac{U_{ij}(N_j - B_j)}{\Phi_i T \varepsilon_i}$$

$$\sigma_i = \frac{U_{ij}(N_j - B_j)}{\Phi_i T \varepsilon_i}$$

$$\mathsf{CCQE}\ \mu + p \mathsf{ signal}$$

 $\mathsf{CCQE}\ \mu + \textit{p}\ \mathsf{sideband}$ 



$$\sigma_i = \frac{U_{ij}(N_j - B_j)}{\Phi_i T \varepsilon_i}$$



$$\sigma_i = \frac{U_{ij}(N_j - B_j)}{\Phi_i T \varepsilon_i}$$



# Probing the nuclear model with charged-current quasielastic scattering







Charged-current quasielastic scattering on nuclear targets is not well described by a simple nuclear model



### MINER $\nu$ A discriminates between nuclear models via lepton kinematics



## A $\mu + p$ CCQE sample probes the hadronic side of the interaction



## Validating final state effects in single pion production



## Previous single pion production data show tension with models



# In CC single $\pi^+$ production, MINER $\nu A$ pion kinematics show broad agreement with models



Interacting with the whole nucleus: coherent pion production



Recent experiments find no evidence for coherent  $\pi^+$  production at  $E_\nu \sim 1\,{\rm GeV}$ 





## MINER $\nu$ A sees clear evidence of coherent pion production



## MINER $\nu$ A coherent pion kinematics disfavour current model



# Beyond carbon: inclusive charged-current scattering on different nuclei







# Ratios of cross sections on ${\rm MINER}\nu{\rm A}{\rm 's}$ passive targets probe nuclear effect variations with A



 ${\rm MINER}\nu{\rm A}$  passive target data shows consistency with model in  $E_{\nu}$  but not x



Increasing  $A \longrightarrow$ 

## What's next: CC1 $\pi^0$ , kaon production, $\nu_e$ CCQE, and higher $E_{\nu}$





## Recap: MINER $\nu$ A data is pointing the way for generators and models



# Backup slides

## Implication for oscillation experiments



27

### Implication for oscillation experiments



Adapted from Martini et al., arXiv:1211.1523

- Affect lepton kinematics,  $E_{\nu}$  reco, hadrons in final state
- Many qualitatively similar calculations available:

Martini *et al.*, PRC 80, 065001 (2009) Benhar, arXiv:1012.2032 Nieves *et al.*, PRC 83, 045501 (2011) Ankowski, Benhar, arXiv:1102.3532 Amaro, *et al.*, arXiv:1104.5446 Martini et al., PRC 81, 045502 (2010) Alvarez-Ruso, arXiv:1012.3871 Fernandez-Martinez, Meloni, PL B697, 477 (2011) Meucci, et al., arXiv:1103.0636 Antonov et al., arXiv:1104.0125 Amaro et al., PRC 82, 046601 (2010) Amaro et al., arXiv:1012.4265 Amaro, et al., PL B696, 151 (2011) Benhar, Veneziano, arXiv:1103.0987

## MINER $\nu$ A CCQE analysis

- Aims:
  - 1. Make shape-only comparisons of  $\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2}$  to nominal model and models with multinucleon effects
  - 2. Look at energy near the interaction vertex for evidence of multinucleon emission
- In both  $\nu$  and  $\bar{\nu}$  data

## CCQE selection



30

## CCQE selection

- Fiducial volume
- MINOS matched track
- $\nu$ :  $\leq$  2 isolated showers
- $\bar{\nu}$ :  $\leq 1$  isolated showers



## CCQE selection



- Require low non-vertex recoil energy
- ▶ ν: r < 300 mm</p>
- ▶  $\bar{\nu}$ :  $r < 100 \, \mathrm{mm}$

## CCQE analysis: Constraining non-QE backgrounds



## CCQE Recoil energy cut



## CCQE Final event selections



- Constrained background using fit to E<sub>recoil</sub> distribution
- Then subtract BG, unfold, efficiency correct to get  $\sigma$
- But first, systematics...

#### Flux

- Tune to NA49 data
- Remaining 10–15% uncertainties
- Cancel in shape analysis



#### 36

- Flux
  - Tune to NA49 data
  - Remaining 10–15% uncertainties
  - Cancel in shape analysis
- Muon energy scale
  - Muon p scale known to 2–3%



- Flux
  - Tune to NA49 data
  - Remaining 10–15% uncertainties
  - Cancel in shape analysis
- Muon energy scale
  - Muon p scale known to 2–3%
- Recoil energy reconstruction
  - Hadronic energy scale from testbeam
  - Hadron reinteractions from external data



- Flux
  - Tune to NA49 data
  - Remaining 10–15% uncertainties
  - Cancel in shape analysis
- Muon energy scale
  - Muon p scale known to 2–3%
- Recoil energy reconstruction
  - Hadronic energy scale from testbeam
  - Hadron reinteractions from external data
- Interaction modelling
  - 10s of % uncertainties on primary interaction, FSI
  - Enter via efficiency correction, background shape

| Model parameter                 | Uncertainty (%) |
|---------------------------------|-----------------|
| CC resonance prod.              | 20              |
| $\Delta$ axial mass $M_A^{res}$ | 20              |
| Non-resonant $\pi$ prod.        | 50              |
| FSI:                            |                 |
| $\pi$ , $N$ mean free path      | 20              |
| $\pi$ absorption                | 30              |

## Vertex energy fit distributions



## Vertex energy fit distributions, zoomed y



## Annulus energy vs proton KE



## Vertex energy, $\bar{\nu}$ mode

- Assume an extra proton
- ▶ Use spatial distribution of energy to infer KE distribution of extra proton



• No increase preferred in  $\bar{\nu}_{\mu}$  mode

- Select events with two or more tracks:  $1\mu$  and the rest protons
- Signal defined by final state: one  $\mu$ , at least one proton with momentum above 450 MeV/*c*, no pions

CCQE  $\mu + p$  sample: identifying protons

• Proton dE/dx profile does PID and momentum reco



## CCQE $\mu + p$ sample: removing non-CCQE events

 Cut on "unattached visible energy" as a function of Q<sup>2</sup> and require no Michel electron



## CCQE $\mu + p$ sample: where do the muons go?



## CCQE $\mu + p$ sample: background tuning method



## CCQE $\mu + p$ sample: background tuning result



## MINER $\nu$ A charged pion production: reco $\pi$ distributions



## MINER $\nu$ A charged pion production: reco $\mu$ distributions



## MINER $\nu$ A charged pion production: reco $Q^2$ distribution



## MINER $\nu$ A charged pion production: BG subtraction



- Constrain  $W > 1.4 \,\text{GeV}$  background from sideband fit
- Fit MC templates for relative normalizations

## MINER $\nu$ A charged pion production: BG scales



Errors stat+syst. Dominant uncertainty is detector energy response

## MINER $\nu$ A charged pion production: absolutely-normalized results



## MINER $\nu$ A charged pion production: Systematics



#### Shape + Normalization

## MINER $\nu$ A charged pion production: Systematics



#### Shape-only errors

# CC inclusive nuclear target ratios

## CC inclusive ratios



G. Zeller and J. Formaggio, Rev. Mod. Phys. 84, 1307-1341 (2012)

$$Q^2=2E_
u(E_\mu-p_\mu\cos heta_\mu)$$
  $u=E_
u-E_\mu$   $x=rac{Q^2}{2M_\mu}$ 

## CC inclusive ratios

- "EMC effect" well-studied but not well-understood
- What can neutrino data say?
  - Sensitive to a different combination of structure functions F<sub>1</sub>, F<sub>2</sub>, xF<sub>3</sub>



SLAC E139: PRD 49 4348 (1994)

## CC inclusive ratios in $\text{MINER}\nu\text{A}$



Figure: B. Tice

- ▶ We have nuclear targets. But not D<sub>2</sub>...
- Strategy:
  - 1. Select CC  $\nu_{\mu}$  events in nuclear targets and scintillator (CH)
  - 2. Construct ratios  $\langle \textit{nucleus} \rangle / \text{CH}$  in  $E_{\nu}$  and x

## Selection



### 1. MINOS-matched track

- 2. Vertex in nuclear target or scintillator plane immediately downstream
- Only significant background: events on plastic
- ▶ Reconstruct  $E_{\mu}$ ,  $\theta_{\mu}$ ,  $E_{had}$  to calculate  $E_{\nu}$ ,  $Q^2$ , x

## Plastic background subtraction



- $\blacktriangleright$  Use data CC  $\nu_{\mu}$  events in scintillator to predict background
- $\ + \$  Geometric acceptance correction from muon gun
- + Efficiency correction as fn of  $E_{had}$  from simulation

## Systematics



- Evaluated in similar way to CCQE analysis
- Most significant new one is plastic background

## CC coherent pion production: Selection

- $\blacktriangleright$  Exactly two tracks, one of which is MINOS-matched  $\mu$
- dE/dx profile consistent with pion (proton score < 0.35)</p>
- Energy near the vertex between 30 and 70 MeV
- Small reconstructed  $|t| = |(q p_{\pi})^2|$ :  $|t| < 0.125 \,\text{GeV}$



## CC coherent pion production: Background tuning

Fit resonant, low W, high W components to  $E_{\pi}$  distribution in 0.2 < |t| < 0.6 sideband.

