Track reconstruction in CHIPS

Maciej Pfützner and Andy Perch

Department of Physics and Astronomy, UCL

Introduction

CHerenkov detectors In Mine Pits (CHIPS) is an R&D project, which aims to develop large-scale cost-effective water Cherenkov neutrino detectors. In the first phase we propose to deploy a detector with 100 kton total mass, submerged in a flooded mine pit in Northern Minnesota [1].

- Stage approach developing smaller modules while delivering physics results
 - CHIPS-M prototype (~50 ton) will be submerged this summer
- Utilising the NuMl beam the most powerful neutrino beam in the world before LBNE
 Contribute to global constraints on CP-violation and mass hierarchy (via ν_e appearance)
 Enhancing LBNE can be moved to a observe the second oscillation maximum in new beam

Charge likelihood

- Divide charge likelihood into predicted number of photoelectrons (μ) and detector response ($f(q;\mu)$)
- μ (predicted charge) = integral of components parametrised with respect to distance along track (s):

 $\mu = \Phi \int_{\text{track}} \rho(s) g(\cos \theta(s); s) \epsilon(\eta(s)) \Omega(R(s)) T(R(s)) \mathrm{d}s$

- Light emission: absolute level (Φ), distance ($\rho(s)$) and angular profiles of Cherenkov light emission ($g(\cos \theta(s); s)$)
- Light detection: PMT angular efficiency($\epsilon(\eta(s))$) and solid angle ($\Omega(R(s))$); absorption survival probability (T(R(s)))
- Tabulate the integrals to save computing time
 For multiple tracks, add predicted charges
 Distribution describing detector response = final charge likelihood function (depending only on μ)

- Water Cherenkov detector is ideal for the low-energy neutrinos
- Leading the way to affordable Mton-scale neutrino detectors
- Figure : δ_{CP} and MH sensitivities for NO ν A + T2K (5+5y + 8.8e21 PoT, red), 100 kton CHIPS (3+3y, blue) and combination (green), for normal hierarchy [1]

CHIPS detector

We want to deploy detector modules with a total fiducial mass of 100 kton in the Wentworth 2W pit in Minnesota – at 707 km baseline and 7mrad off-axis in NuMI beam, with flux peaking at 4 GeV.

Figure : Mean observed charge compared to predicted response for two upward 500 MeV electrons (top cap only). Optic light scattering has not yet been implemented.

Time Likelihood

 Correct registered time (black lines) by subtracting light's time-of-flight from track to PMT
 This holds sensitivity to track vertex and directions

- Existing water body provides mechanical support → decrease engineering costs
- Structure is a light frame surrounded by a water- and light-proof liner
- ► 40 m water overburden
- Using commercially available component
 - Stage stage truss for framework
 - Geomembrane for external liner
- PMT development focused on optimising light collection and timing capabilities

Figure : Time distributions shown for two charge bins of a 1000 MeV muon sample

Minimising the likelihood

The combined likelihood algorithm is now being tested

Combined likelihood surface for vertex x, y $5 \frac{300}{5}$ -0.65

- Distributions of corrected time $(t_c,$ blue lines) depend only on track energy and predicted charge (μ) at the PMT
 - Fitted with a gaussian peak (direct light) + exponential decay (scattering and reflection)
 - Parametrise charge and energy dependence in two stages of polynomial fits
- Likelihood function of t_c is recreated for given μ and energy (red lines)

Reconstruction

- To measure δ_{CP} we have to observe ν_e appearance. Background from NC events with $\pi^0 \rightarrow \gamma + \gamma$: two photon rings are hard to distinguish from one electron
- Compromise between low cost and high photocathode coverage

We implement a **maximum-likelihood method** based on an algorithm developed by MiniBooNE [2]

- Calculates the likelihood of each PMT hit (charge and time) for a set of track parameters. Minimising over different tracks finds the most likely one
- Performs better than ring-finding for multiple tracks [3]
- Preliminary reconstruction will be used to optimise design of CHIPS modules

Total likelihood separates into independent charge and time parts

and a preliminary fitter is being implemented.

Shown is a likelihood surface plotted against vertex coordinates x and y for a 1500 MeV muon originating in (0,0,0), with other variables fixed at their true values.

References

-] P. Adamson et al., CHerenkov detectors in Mine PitS (CHIPS) Letter of Intent to FNAL, 2013
- [2] R.B. Patterson *et al.*, *The Extended-Track Event Reconstruction for MiniBooNE*, Nucl. Instrum. Meth. A608, 206-224, 2009
- [3] K. Abe *et al.* [T2K Collaboration], *Observation of Electron Neutrino Appearance in a Muon Neutrino Beam*, Phys. Rev. Lett. 112, 061802, 2014