Systematic decomposition of the neutrinoless double beta decay operator

If there were a tension between different measurements of neutrino mass (such as coming from neutrinoless double beta decay, cosmology, oscillation, and single beta decay), the contribution from a $d=9$ (six-fermion) effective operator to the neutrinoless double beta decay process would gain particular importance. We first provide a complete list of tree-level diagrams for the $d=9$ operators. It is interesting to point out that a typical energy scale of new physics, which is explored by the next generation neutrinoless double beta decay experiments, is $\mathcal{O}(1) \mathrm{TeV}$, which is now intensively investigated by the LHC. With the help of our complete list, one can systematically scan the possible high-energy theories associated with new physics beyond the standard neutrino model.

Based on
No. 26105503

Florian Bonnet, Martin Hirsch, Toshihiko Ota, and Walter Winter

Work in progress,

Juan Carlos Helo, Martin Hirsch, Toshihiko Ota, and Fabio Alex Pereira

Effective operators

If the standard model is an effective model of a fundamental theory that is realised at a high-energy scale, the full Lagrangian $\mathscr{L}_{\text {eff }}$ at the low-energy scales should be described by the standard-model Lagrangian $\mathscr{L}_{\text {SM }}$ plus a series of effective interactions \mathcal{O}_{d} that are suppressed by some new-physics scale Λ_{NP}, where d is the mass dimension of the operators $(d>4)$:

$$
\mathscr{L}_{\mathrm{eff}}=\mathscr{L}_{\mathrm{SM}}+\frac{\mathcal{C}_{d=5}}{\Lambda_{\mathrm{NP}}} \mathcal{O}_{d=5}+\frac{\mathcal{C}_{d=6}}{\Lambda_{\mathrm{NP}}^{2}} \mathcal{O}_{d=6}+\frac{\mathcal{C}_{d=7}}{\Lambda_{\mathrm{NP}}^{3}} \mathcal{O}_{d=7}+
$$

The effective operators \mathcal{O}_{d} consist of the standard-model fields and are expected to be invariant under the transformation of the standard-model gauge symmetries.
Effective operators are a typical low-energy remnant of new physics at high-energy scales.

Exhaustive Bottom-up approach

Fig. 2 Schematic explanation of the exhaustive bottom-up approach.
The $d=9$ operators \mathcal{O}_{i} are decomposed to all the possible tree-level diagrams. Each row in the table corresponds to a high-energy model. After the mediators are integrated out again, each model results in the different low-energy effective theories, which bring different phenomenological consequences.

Complementarity between $0 \nu 2 \beta$ and LHC

Work in progress
LNV interactions that appear in the decomposition of $d=9$ operators may be the origin of neutrino Majorana mass. We are studying the relation between Decompositions and Radiative neutrino mass models. If neutrino mass measurements would require new physics beyond the standard neutrino physics, the relation should be an important clue to understand the fundamental theory of neutrinos. See e.g., [10,12-16].

 (2001) 667, [13] de Gouvea Jenkins, PR D77 (2008) 013008, [14] Angel et al., PR D87 (2013) 073007, [15] Angel et al., JHEP 1310 (2013) 118, [16] Kohda

