THEORY AND PHENOMENOLOGY OF SUPERNOVA NEUTRINOS

Cecilia Lunardini

Arizona State University

Topics

- Introduction
- Status and updates
 - Numerical simulations
 - Oscillations
 - Diffuse flux and mini-bursts
- Discussion: future directions

INTRODUCTION

Core collapse supernovae

Artist's impression of SN2006gy – credit: NASA/Getty Images

Core collapse : a neutrino event

- M > 8 M_{sun} : death by core collapse
 - Gravitational collapse \rightarrow bounce and shock \rightarrow explosion
 - E ≈ 10⁵³ ergs emitted, 99% in neutrinos & antineutrinos of all flavors
- Neutrinos are *direct* messengers
 - Diffuse from inner 50-200 Km
 - Only unambiguous tracers of core collapse

The only place today where neutrinos...

- Produce a macroscopic force
 - Re-launch a stalled shock
- Are thermalized
- Undergo four stages of oscillations
 - All masses and mixings contribute
- Have observable interaction with each other
 - Oscillation effects

Quasi-thermal spectra

 $\langle E \rangle \sim 9-18~{
m MeV}$

- Hierarchy of energies
 - Different coupling to matter → different decoupling radii

$$\langle E \rangle_e \lesssim \langle E \rangle_{\bar{e}} \lesssim \langle E \rangle_x$$
$$(x = \mu, \tau)$$

Figure from Fogli et al., JCAP 0504 (2005) 002

Phases of neutrino emission

Odrzywolek & Heger, Acta Phys. Polon. 41 (2010)

Fischer et al., A&A 517 (2010)

NUMERICAL SIMULATIONS

Neutrino fluxes

Neutrino-driven explosion in *multi-D*

- Multi-dimensionality is crucial
 - Convection, shock instabilities, ...
- Second generation 2D (axisymmetric) simulations
 - Ab-initio, self-consistent, spectral neutrino transport
 - t<1 only available

from M. Liebendörfer's homepage

Paper	Туре	D	Outcome	$t_{\rm end}(s)$
Mueller et al. (2012)	u variable Ed- dington factor method	2D	$E_{\mathrm{exp}} \lesssim 0.2$ foe, $E_{\mathrm{rec}} \lesssim 0.2$ foe	0.8
Janka (2013)	ν variable Ed- dington factor ν method	3D	No explosion	0.35
Takiwaki et al. (2013)	IDSA ν scheme	2,3D	$E_{\mathrm{exp}} \lesssim 0.1$ foe in 3D	< 0.4 in 3D
Bruenn et al. (2013)	RbR+ approxima- tion	2D	No explosion for $25M_{\odot}$ success for 12,15,20 M_{\odot} . Explosion energy $E_{\rm exp} \simeq 0.3 - 0.4$ foe	0.5 - 0.8
Couch & Ott (2013)	neutrino leakage scheme	3D	Core perturbations help shock re- vival	$\lesssim 0.3$
Couch & O'Connor (2013)	neutrino leakage scheme	2,3D	3D explodes less easily than 2D	< 0.5
Suwa et al. (2010)	IDSA ν scheme	2D	$E_{\rm exp} \lesssim 0.1$ foe	0.5
Suwa (2013)	IDSA ν scheme	2D	~ 0.1 foe	70
Dolence et al. (2014)	MGFLD	2D	No explosion	$\sim 0.6 \; \rm s$

Calculations with "realistic" neutrino transport, from Papish, Nordhouse and Soker, arXiv:1402.4362

Towards 3D : Standing Accretion Shock Instability

- Deformation, sloshing of shock front
 - Affects v emission rate

Blondin, Mezzacappa, DeMarino, ApJ. 584 (2003) Scheck et al., A&A. 477 (2008)

 Strong in 3D with detailed neutrino transport

> Tamborra et al., arXiv:1307.7936 See also Lund et al., PRD 82, (2010), PRD 86, (2012)

Lepton-number Emission Self-sustained Asymmetry

- $N(\nu_e) N(\bar{\nu}_e)$ has (quasi-)dipolar form
 - Possible implications on r-process, oscillations

Tamborra et al.,arXiv:1402.5418

PHENOMENOLOGY OF OSCILLATIONS

Unique interplay of frequencies

- Kinetic
- v-e potential
- v-v potential

$$\omega_{ij} = \Delta m_{ij}^2 / 2E$$
$$\lambda = \sqrt{2}G_F n_e \propto R^{-3}$$
$$\mu \simeq \sqrt{2}G_F n_\nu^{\text{eff}} \propto R^{-4}$$

Vacuum + matter + self-interaction

$$\mathsf{H}_E = \mathsf{H}_E^{\mathrm{vac}} + \mathsf{H}_E^{\mathrm{m}} + \mathsf{H}_E^{\nu\nu}$$

$$\begin{aligned} \mathsf{H}_{E}^{\mathrm{vac}} &= \mathsf{U} \operatorname{diag} \left(-\frac{\omega_{21}}{2}, +\frac{\omega_{21}}{2}, \omega_{31} \right) \mathsf{U}^{\dagger} ,\\ \mathsf{H}^{\mathrm{m}} &= \sqrt{2} G_{\mathrm{F}} \operatorname{diag}(N_{e}, 0, 0) \\ \mathsf{H}_{E}^{\nu\nu} &= \sqrt{2} G_{F} \int dE' (\rho_{E'} - \bar{\rho}_{E'}) (1 - \cos\theta) \end{aligned}$$

θ angle between incident momenta

 $\Delta m_{31}^2 > 0$ normal hierarchy, NH $\Delta m_{31}^2 < 0$ inverted hierarchy, IH

- Nu-nu interaction : non-linear, collective effects
 - Spectral splits/swaps, no general solution

Seminal works: Duan, Fuller & Qian, PRD74 (2006), Duan et al., PRD74 (2006)

Contributors by affiliation

UC San Diego, U. Minnesota, Los Alamos Natl. Lab., Northwestern U., North Carolina State, U. of Washington (INT), Ohio State U., U. Wisconsin, U. of New Mexico

Tata Inst., Harish-Chandra Res. Inst., Saha Inst.

APC Paris, Valencia U., Max Planck Munich, Bari U., INFN Bari, Hamburg/DESY, GRAPPA Amsterdam, INR Moscow, ICTP Trieste

Linearized stability analysis

- Linearized equation for flavor-changing parameter
 - $|S|^2 + |s|^2 = 1$, $|S|^2 << 1$, $\theta << 1$

$$S_{swap} = \begin{pmatrix} s & S \\ S^* & -s \end{pmatrix} \qquad P(\nu_e \to \nu_e) = \frac{1}{2}(1+s) \qquad -1 \le s \le 1$$
$$i\partial_r S = (\omega + u\bar{\lambda})S - \mu \int d\Gamma' \left[u + u' - 2\sqrt{uu'}\cos(\varphi - \varphi') \right] g'S'$$

• Solve eigenvalue equation for frequency: $S = Q_{\Omega} e^{i\Omega t}$

 $\Im m(\Omega) = \begin{cases} < 0 & \text{instability}, \text{strong conversion} \\ > 0 & \text{damping} \end{cases}$

Banerjee, Dighe, Raffelt, PRD 84, (2011), Sarikas et al., PRD 85 (2012), arxiv:1109.3601

Pre-cooling phases

- Neutronization peak, accretion phase (Fe-core SNe)
 - High matter density suppresses collective effects → MSWdriven oscillations dominate

Chakraborty et al., PRL 107, (2011), PRD 84 (2011) Dasgupta, O'Connor & Ott, PRD85 (2012)

- $\sin^2 \theta_{13} = 0.02$ drives *adiabatic* MSW resonance
 - complete flavor permutation
 - neutrino channel for NH \rightarrow hotter ν_e spectrum
 - antineutrino channel for IH \rightarrow hotter $\bar{\nu}_e$ spectrum

Dighe & Smirnov, PRD 62 (2000), CL & Smirnov, JCAP 0306 (2003)

Robust signatures of mass hierarchy

• NH : disappearance of neutronization peak

Gil Botella & Rubbia, JCAP 0310 (2003) Kachelriess et al., PRD71 (2005)

- Oscillations in the Earth
 - $\bar{
 u}_e$ only for NH
 - ν_e only for IH
 - 5-10% effect, needs good energy resolution

Borriello et al., Phys.Rev. D86 (2012)

Cooling phase: collective effects

- Azimuthal symmetry: Multi-Zenith-Angle instability
 - include angular distribution of emission
 - spectral splits
 - IH more unstable

Relaxing azimuthal symmetry

- New Multi-Azimuthal Angle instability
 - New splits in NH
- Initial symmetry is (spontaneously) broken
 - Symmetric initial conditions → asymmetric solution

Turbulence, interdisciplinary ramifications, ...

collective + MSW + turbulence

Lund & Kneller, PRD 88, 023008 (2013), Borriello et al.,arXiv:1310.7488

collective oscillations and r-process

Duan et al., J. Phys. G 38 (2011)

collective oscillations and shock-revival

Dasgupta, O'Connor & Ott, PRD85 (2012)

Other new effects: the halo

- rescattered flux incident at large angle
 - < 10⁻⁴ fraction
 - possible spectral swaps
 - ONeMg SN, neutronization flux

Cherry et al., PRL 108 (2012), Cherry et al., PRD87 (2013) Sarikas et al., PRD85 (2012)

Transition magnetic moment

- Neutrino → antineutrino collective oscillations
- Sensitive to Standard Model Majorana transition magnetic moment

$$|\mu_{ij}| = \begin{pmatrix} 0 & [0, 3.1] & [0, 3.3] \\ [0, 3.1] & 0 & [0, 7.2] \\ [0, 3.3] & [0, 7.2] & 0 \end{pmatrix} \times 10^{-24} \ \mu_B$$

De Gouvea & Shalgar, JCAP 1210 (2012), JCAP 1304 (2013)

New approaches: formalisms

- QFT-based derivation of evolution equations
 - Consistent inclusion of refraction and collision terms
 - New "spin coherence" term, $\propto \frac{m}{E}V$: $\nu \rightarrow \bar{\nu}$ conversion?

Vlasenko, Fuller, Cirigliano, PRD89 (2014)

 Lagrange polynomials, many body techniques, chaos theory,...

> Baldo & Palmisano,arXiv:1202.2243 Volpe, Vaananen & Espinoza, PRD87 (2013) Hansen & Hannestad, arXiv:1404.3833

DIFFUSE SUPERNOVA NEUTRINO BACKGROUND

Guaranteed : whole-sky flux

- Galactic SN : high statistics, but very rare
 - N~ 10⁴ events, ~ 0.01/year
- Low statistic but *guaranteed*:
 - *Mini-bursts* : SNe at few Mpc, N~2-3, ~ 1/year

Kistler et al., PRD 83, 2008, CL & Yang, PRD84 (2011)

 Diffuse Supernova Neutrino Background (DSNB) : cosmological flux, constant in time

> Bisnovatyi-Kogan & Seidov, Sov. Ast. 26 1982, Krauss, Glashow and Schramm, Nature 310 (1984)

DSNB : probing the SN population

- SN statistics
 - typical parameters? Common phenomena?
- Cosmological supernovae
 - History of core collapse?
- SN diversity: rare types
 - Failed SN, ONeMg SNe, PopIII, supermassive stars, ...

fig. from Ando & Sato, New J.Phys. 6 (2004)

Calculating the DSNB

 $M_0 \simeq 8M_{sun}$ $M_{max} \simeq 125M_{sun}$

Z Hopkins and Beacom, ApJ. 651 (2006), Horiuchi et al., ApJ 738 (2011)

Including multiple effects

- Accretion-, MSW-dominated
 - Other effects ~10%

C.L. and I. Tamborra, JCAP 1207 (2012) [fluxes from 1D code: Fischer et al., A&A 517 (2010)]

Mathews et al., arXiv:1405.0458

SUMMARY FUTURE DIRECTIONS

Uncovering the complexity

- Still understanding the microphysics
 - collective oscillations, neutrino imprint of 3D effects
- Exploring the diversity of phenomena
 - phases of neutrino emission, SN types, ...
- Mapping the parameter space
 - progenitor masses, equations of state, SN rate

from M. Liebendörfer's homepage

Possible future directions

- stronger focus on neutrinos in numerical simulations
 - detailed cooling phase, pre-supernova, ...
- towards complete description of oscillation effects
 - consistent, unified theory
 - disentangling signatures of different effects: possible?
 Potential?
- stronger interdisciplinary focus
 - neutrinos as probes of SN physics, star formation, interplay with gravity waves, nuclear physics

Thank you!

BACKUP

Cosmological SN rate

- Proportional to star formation rate
 - Distribution of star masses at birth $\eta(M) \propto M^{-2.35}$

$$\dot{\rho}_{SN}(z,M) = \frac{\eta(M)}{\int_{0.5M_{sun}}^{M_{max}} dM \ M\eta(M)} \dot{\rho}_{\star}(z)$$

$$\dot{\rho}_{\star} \propto \begin{cases} (1+z)^{3.28} & z < 1\\ (1+z)^{-0.26} & 1 < z < 4.5\\ (1+z)^{-7.8} & 4.5 < z \end{cases}$$

Hopkins and Beacom, ApJ. 651 (2006)

- Measurements improving rapidly
 - Subdominant uncertainty on the DSNB

Linearized stability analysis

$$S_{swap} = \begin{pmatrix} s & S \\ S^* & -s \end{pmatrix} \qquad P(\nu_e \to \nu_e) = \frac{1}{2}(1+s) \quad -1 \le s \le 1$$

$$i\partial_r S = (\omega + u\bar{\lambda})S - \mu \int d\Gamma' \left[u + u' - 2\sqrt{uu'}\cos(\varphi - \varphi') \right] g'S'$$
$$S(r, \omega, u, \varphi) = Q_{\Omega}(\omega, u, \varphi) e^{-i\Omega r}$$
$$(\omega + u\bar{\lambda} - \Omega)Q_{\Omega} = \mu \int d\Gamma' \left[u + u' - 2\sqrt{uu'}\cos(\varphi - \varphi') \right] g'Q'_{\Omega}$$

 Ω complex \rightarrow Instability Im(Ω) > 0 *runaway, strong conversion* Im(Ω) < 0 suppression of oscillations

Normal hierarchy

Inverted hierarchy

Star formation rate

Including failed and ONeMg-core SN

Failed/dark SNe might appear

CL, PRL 102 (2009); Lien et al., PRD81 (2010); Keehn & CL, PRD85 (2012); Mathews et al., arXiv:1405.0458

DSNB Event rates

