
Double Chooz

Neutrino 2014

H. De Kerret U Paris Diderot & CNRS/IN2P3/APC On behalf of the Double Chooz collaboration

Θ_{13} -reactor measurements...

reactor precision is unsurpassable \rightarrow setting θ_{13} for several decades to go!!

(also measurement by T2K, MINOS, etc)

• future work together (DC+Daya Bay+ RENO) to help producing the world θ_{13} • reactor-detector different length helpful for delta M23 ?

experimental setup...

Near

2014

Far <L> 400m <L> 1050m ~300v/day $\sim 40 v/day$ 120mwe 300mwe Target: 8.2t Target: 8.2t April 2011

edf **Two Reactors** Power: 8.5GWth $\implies \sim 10^{21} \text{v/s}$

Flamanville

Gravelines

St-Laurent Dampierre,

Penly

Paluel 🥝

Chinon

Civaux

Golfech

Blayais

Chooz

Nogent

Belleville

Cruas

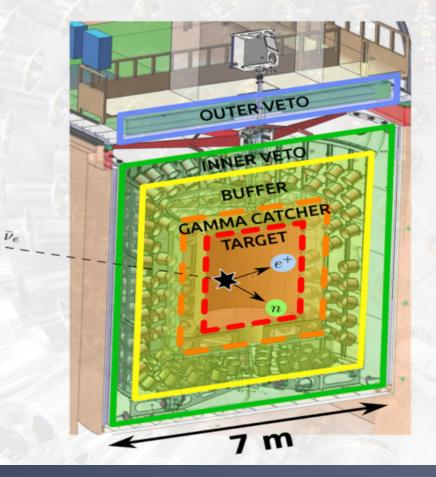
Tricastin

Bugey St-Alban Creys-Malville

Cattenom

Fessenheim

Double Chooz collaboration...



INVERSE BETA DECAY on proton (thresold > 1.8 MeV)

 $\bar{\nu}_e + p^+ \longrightarrow e^+ + n$

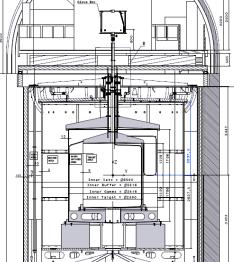
prompt signal: scintillation + e⁺ annihilation Eprompt ≈ E(ve) - 0.8 MeV

delayed signal: γ ray(s) from neutron capture n-Gd Edelayed $\approx 8.0 \text{ MeV } \Delta T \approx 30 \ \mu s$ or n-H Edelayed $\approx 2.2 \text{ MeV } \Delta T \approx 200 \ \mu s$

Neutrino target: liquid scintillator PXE + Gd

Gamma catcher: liquid scintillator PXE (no Gd)

Buffer volume: transparent mineral oil with 390 x 10" PMTs assembly

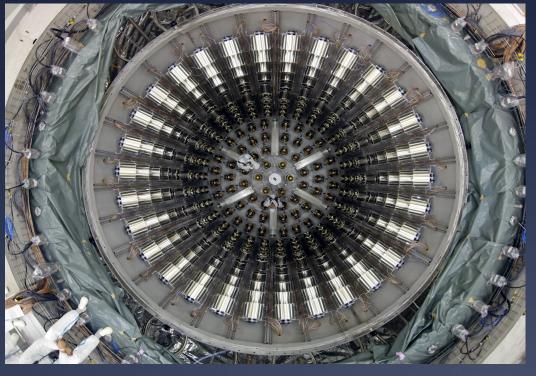

Inner Veto: liquid scintillator (LAB) with 78 x PMTs 8"

Outer Veto: plastic scintillator strips

Letter of Intent 15 may 2004: 10th anniversary !

our favourite view...

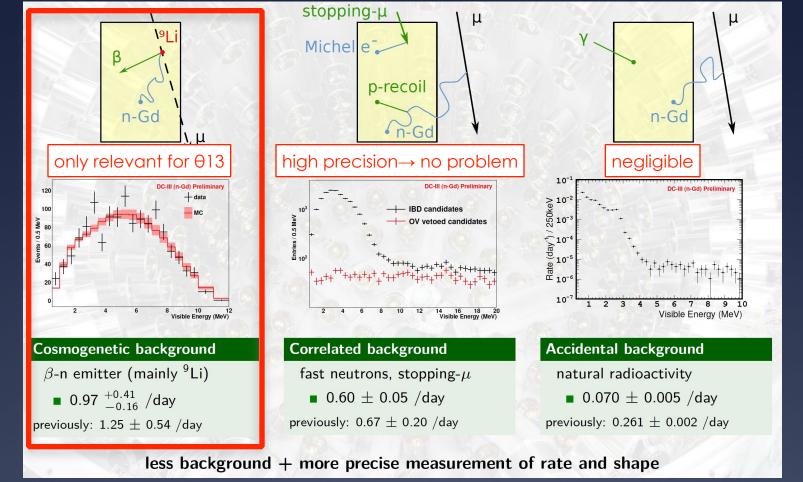
engineer's view


MC's view

				-
٠	N	= ()=	• • I	, 🗂 🜡
	רטי דער קריירטי די די א די א די א		ener of the second s	
nin all and			and the second	Collin .
199				6.84
100		5-5-6	 And the set of the s	× .
1003			و ک	
		50 TO 10		0
10 Q S				
		2712172		09
1895	\sim	<u>PTOT</u>		Colli
1986		ə 💿 🤤		GM;
	S S S	<u></u>	0.00.00	<u>/</u>
		000		Logh

our top µ-tracker/veto (Outer-Veto)...

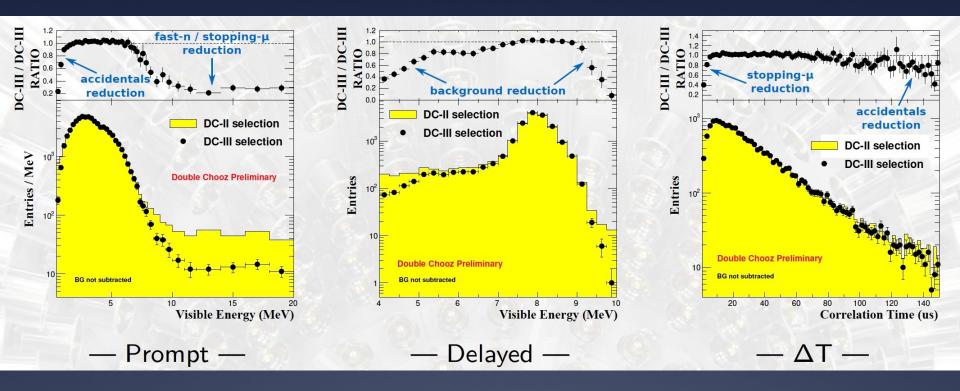
NEAR DETECTOR : READY SOON


Fill this summer \rightarrow Neutrinos in september/October Buffer closed main tank to be closed this week

BACKGROUNDS

All components measured separately (exclusive background)

Then entered in the rate + shape fit \rightarrow more precise value obtained

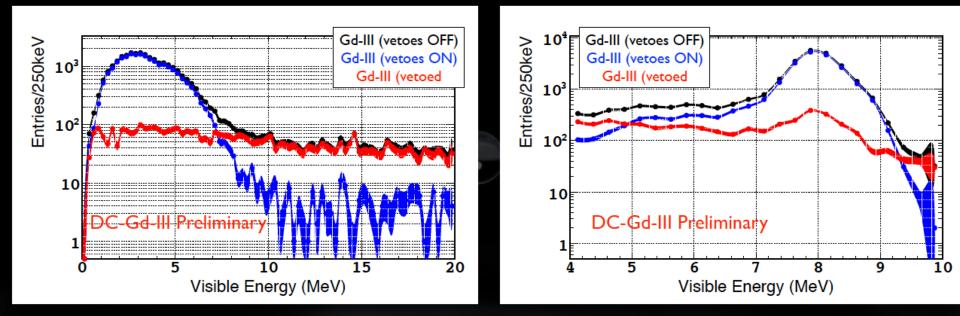


fast-neutrons \rightarrow identified by bugey 3 \rightarrow CHOOZ design Lithium+Helium \rightarrow identified by KamLAND and CHOOZ \rightarrow DC design

• current reactor experiment generation \rightarrow **no new background seen** • detectors strong rejection to cope with specificities (light noise, stop- μ , accidental,etc..)

\rightarrow some information come from the DC-III data [next slides]

new major background rejection...

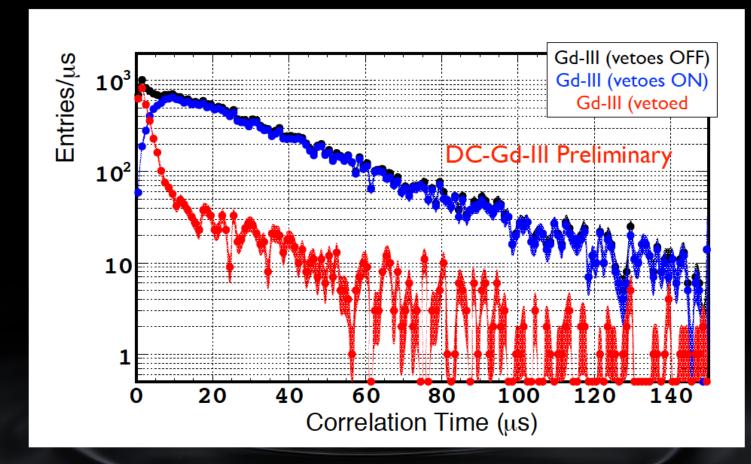

much better active background rejection/control \rightarrow wide open selection \Rightarrow major reduction of all systematics

17351 IBD candidates (background included) in 460.67 days

selection details...

	Gd-III IBD candidate criteria	
µ-tagging	Energy(ID)≥20MeV&Charge(IV)≥30k(a.u.)	
Δ†(μ)	lms NEW!	Selection
QmQt	≤0.12 <u>New!</u>	Light Noise
RMS(time,charge)	2D cut NEW!	Selection
ΔQ	30k(a.∪.) №₩!!	
∆t(n~e	[0.5,150]µs	
∆d(n~e	≤1m <mark>NEW!</mark>	IBD
E(delay)	[4,10]MeV	Selection
E(prompt)	[0.5,20.0]MeV№₩	
Multiplicity	[-0.2,0.6]ms (relative to prompt)	
OV veto	yes	
IV veto		BG
FV veto		Rejection
Li+He veto	Yes NEW!!	12

our BG active BG rejection vetoes...

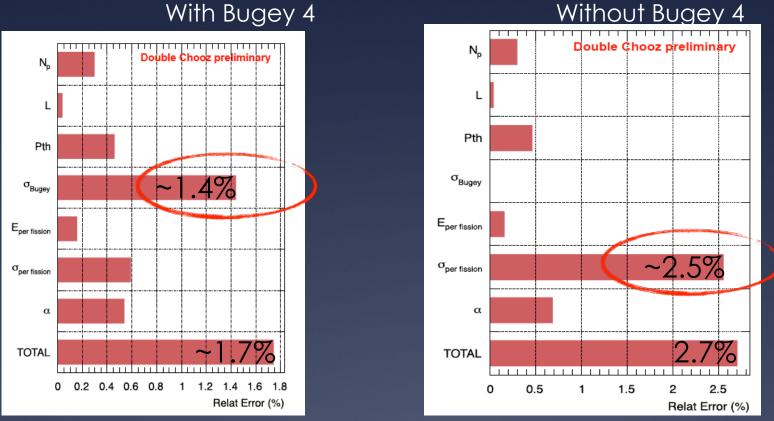


veto efficiency (%)	absolute (per veto)	uncorrelated fraction	relative (with all other vetoes)
IV veto	24	7	40
OV veto	62	7	41
FV veto	71	19	66
all vetoes	90	33	

Power(rejection) ~90%, estimated [12,20]MeV (high redundancy)

(VERY unusual for LS detector \rightarrow a volume of liquid flashing)

correlated events vetoes (all)...



vetoes reject correlated events (very challenging→ accidentals are much easier)

slow correlation \rightarrow neutrons in final state fast correlation \rightarrow stopped- μ 's (lifetime of a μ)

SYSTEMATICS

Bugey our "near" detector now...

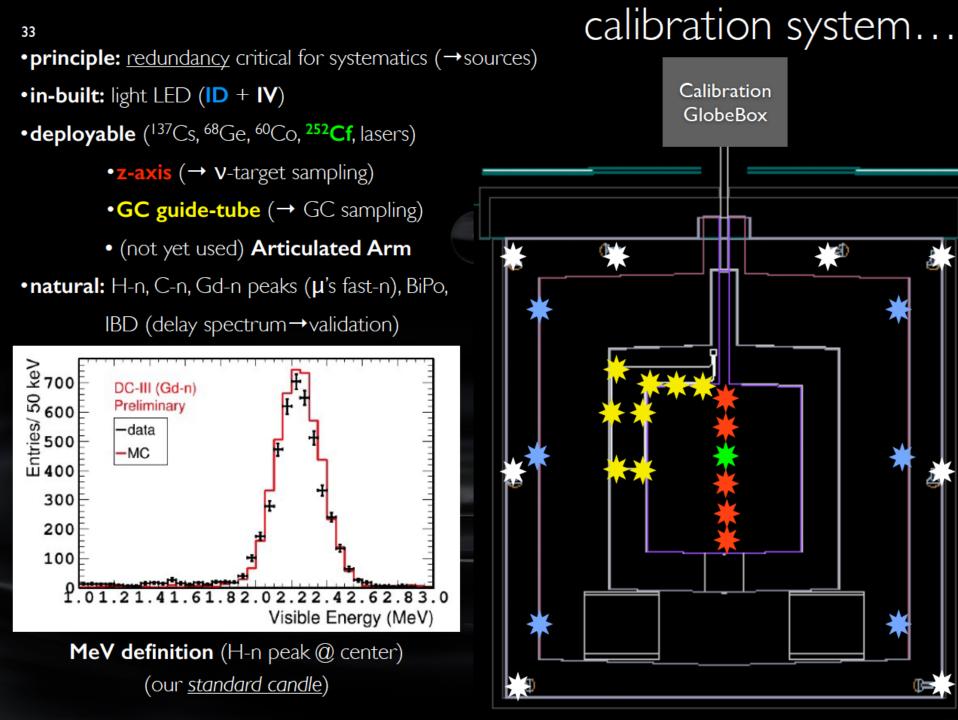
With Bugey 4

DC used Bugey as effective ND (via MC)

It reduces ~30% the dominant flux uncertainty \rightarrow used by KamLAND...

note: Bugey4 precise reactor flux measurement on purpose after Bugey3 (2) detectors) for CHOOZ experiment (only one far detector) 16

systematics recapitulation...


systematics	DC-Gd-II (%)		DC-Gd-III (%)		
δ(flux)	1.7		1.7		+
δ(detection)	~1.0		~0.6		RRM input
exposure (days)	227.9 (8249 IBDs)		467.9 (17358 IBDs)		RRM
∆(background) (input output)	1.6	0.9 (R+S) 0.11	0.8	0.3 (R+S) 0.5 (RRM)	

R+S input

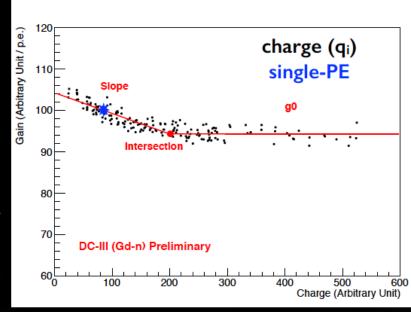
Δ(background) independent estimation: <u>no spectral info used</u> ⇒ input to Rate+Shape (mandatory) and RateRateModulation (optional)

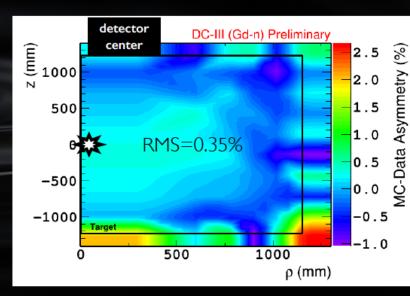
∆(background) re-estimated by the final fit (R+S and RRM are 2 methods described later)

Energy Reconstruction

energy reconstruction (1)...

• integrated data and MC calibration scheme...


- MC treated independently (as two detectors)
- MC (no free knobs \rightarrow lab measurement + calibration)


• Linearised-PE & Alpha Calibration...

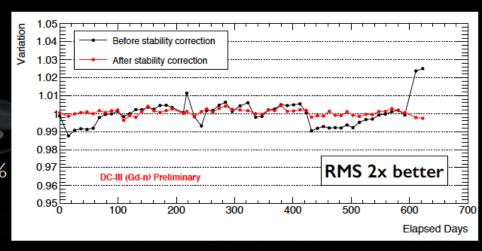
- def: $PE = \alpha(PE, \#PMT hit) \times [\Sigma qi \times g(qi)]$
- conversion $Q[\Delta \sim 5\%] \rightarrow PE[\Delta \leq 0.5\%]$ @ H-n peak center
- impact: stability (+++), linearity (++), uniformity (+)
- source: gain non-linear [@electronics] + other (zeroes, etc)

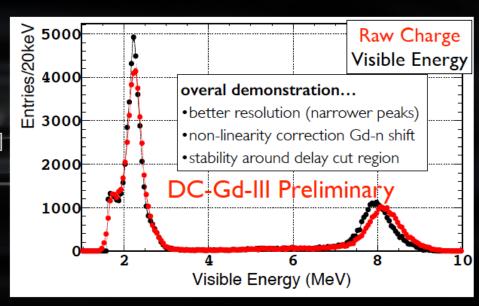
Uniformity Calibration...

- def: create H-n response full volume MAP
- conversion $PE(\rho,z)[\Delta \le 8\%] \rightarrow PE(center) [\Delta \le 0.5\%]$
- impact: uniformity (+++)
- MeV (or absolute) Energy Calibration...
 - conversion: $PE(0,\tau) \rightarrow MeV(0,\tau)$
 - use ${}^{252}Cf@(\rho=0, z=0, t=\tau) \rightarrow H-n peak: 2.223MeV$
 - DATA to MC equalisation (prior <0.5% agreement)

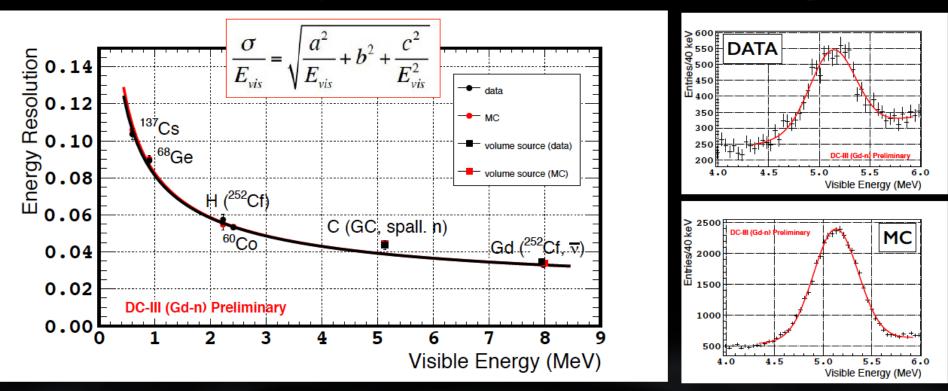
energy reconstruction (2)...

• Drift Stability Calibration...


- def: $PE(t) \rightarrow PE(\tau)$, where τ : time MeV definition
- response drift by +0.5%/years (unknown)
- impact: stability (+)
- Charge Non-Linearity Calibration...
 - readout driven-non-linearity $\rightarrow \Delta$ (H-n,Gd-n)=~1%
 - validation with C-n peak @ 5MeV & ¹²B spectrum
 - impact: linearity (+)


• Light Non-Linearity Calibration...

- single- γ scintillation quenching measurement
 - many calibration sources @ center
- conversion: MeV(e+)→MeV(single-γ) [only MC]
- impact: linearity (++)


Overall performance...

- from Q(q, ρ,z,t) [RMS~10%] to MeV [RMS≤1.0%]
- better detection systematics $\rightarrow \theta^{13}$, BGs, Δm^2 .

response coherence all throughout...

a: statistical term b: constant term c: e.g. electric noise

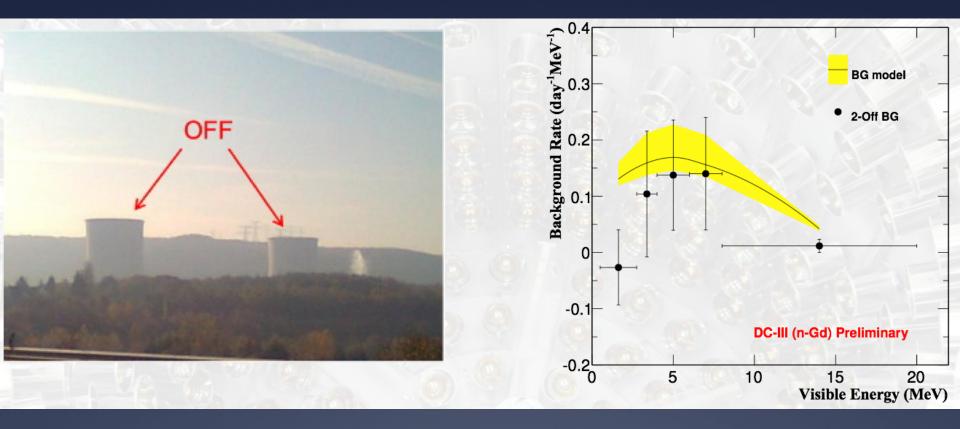
Data

a=0.0773±0.0025 b=0.0182±0.0014 c=0.0174±0.0107

MC

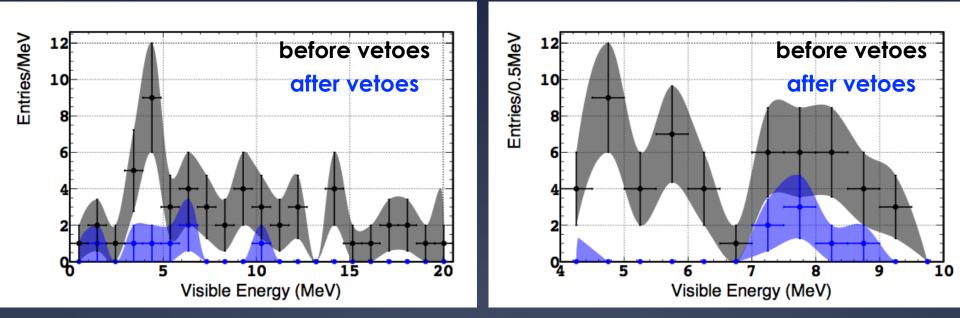
a=0.0770±0.0018 b=0.0183±0.0011 c=0.0235±0.0061

remarkable agreement data to MC throughout full energy range


identical curves (→ no free knobs in MC)

- •most relevant region for θ_{13} is \leq 4MeV
- •excellent precision: peak position and widths (highly non-trivial)
 - true for peaks in center or <u>anywhere in NT and GT</u>
 - •C-n peak (mainly from GC) \rightarrow slight different response in GC (worse)

constant term of resolution ~1.8% (powerful calorimetry)


•dominated by stochastic term

IBD candidates with reactors OFF

agreement between reactor fully OFF and background model (poor spectral info→ mainly rate) tension BG(OFF)^{inclusive} < Σ bgi^{exclusive} @ ~2σ ⇒ it implies no (or very little) room for any <u>unknown background</u>

reactor 2xOFF data...

7 events in 7.238 days - 13.4 expected

 2xOFF data: powerful information before/after veto evolution (scrutinising a few event-wise BG-only)
 1 week→poor stats (spectral info fluctuations dominated)→ inconclusive P(rejection)=(7.7±3.1) @ Gd-III (in agreement with (9.9±1.0) estimated between [12,20]MeV) Θ_{13} RESULTS

several analyses sensitive to θ_{13} ...

Rate+Shape Analysis (R+S)

- Exploit full spectra and E/L signature of θ_{13} (v-oscillations)
- •BG measured in-situ \rightarrow further constrained by shape information
 - •x2 precise BG estimate (w.r.t. Gd-II) \rightarrow x3 precise δ (BG) after R+S fit

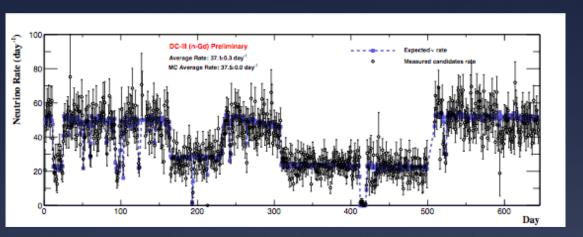
• Provides most precise measurement of Θ_{13}

Reactor Rate Modulation Analysis (RRM) (Double Chooz only)

- Exploits variations of reactor power: fit a straight line in the neutrino rate/reactor power
- Background- and spectrum shape-independent measurement of θ_{13}

•BG (and θ_{13}) constrained by Rector-OFF data

- Precision improved with input BG estimates
- (**unique DC**) remarkable cross-check θ_{13} with and without BG model

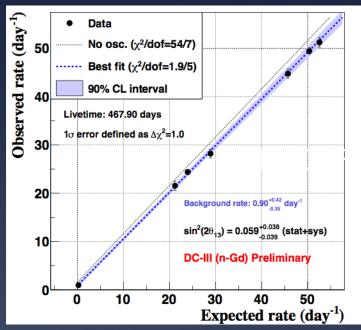

(RO) rate-only analysis (cross-check only)

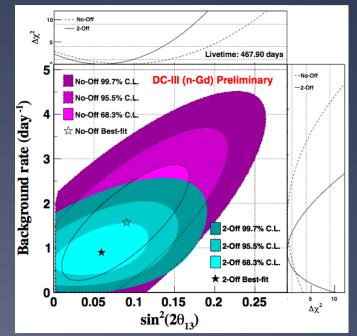
The same 3 analyses using neutron H-n captures
 first such analysis published Jan 13 [hep-ex 1301.2948]

Several Analyses...

Gd-n	Background		Theta 13		
analysis	input	output			
Rate + Shape (R+S)	BG model	background further constrained by shape		same with H-n analysis	
Reactor Rate Modulation	no	background independant teta 13 Measurement		also Gd-n⊕H-n	
(RRM)	full reactor off	no	Precision improved from this BG input	combined analys	
Rate Only	no	no	cross check		
(RO)	full reactor off	no	cross check		

Reactor Rate Modulation analysis...

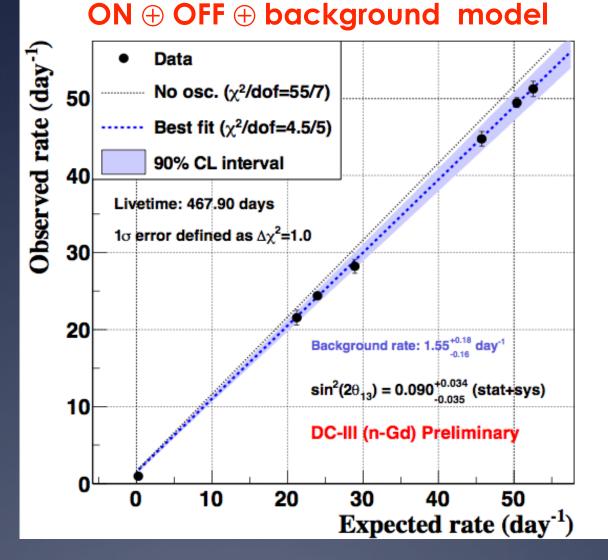



exploit our 100% variations in reactor power...
 measure BG and sin²(20₁₃) simultaneously
 Background is inclusive→ even unknown
 ⇒ background measurement without model

• fit is straight line...

- BG^{inclusive}→ intercept
- $sin^2(2\theta_{13}) \rightarrow slope$

• unique analysis of DC (remarkable validation)

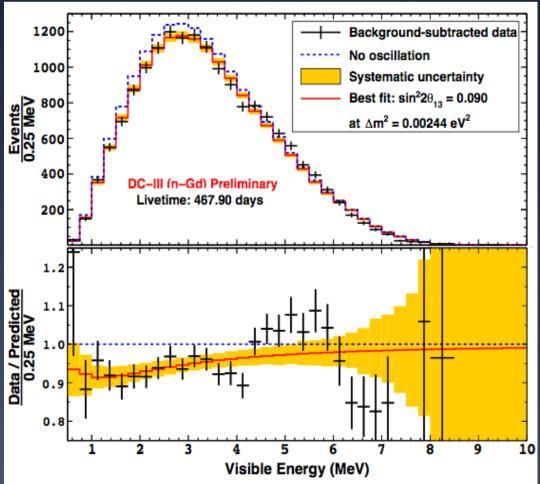


the ultimate Reactor Rate Modulation results...

3 ways to constrain BG...

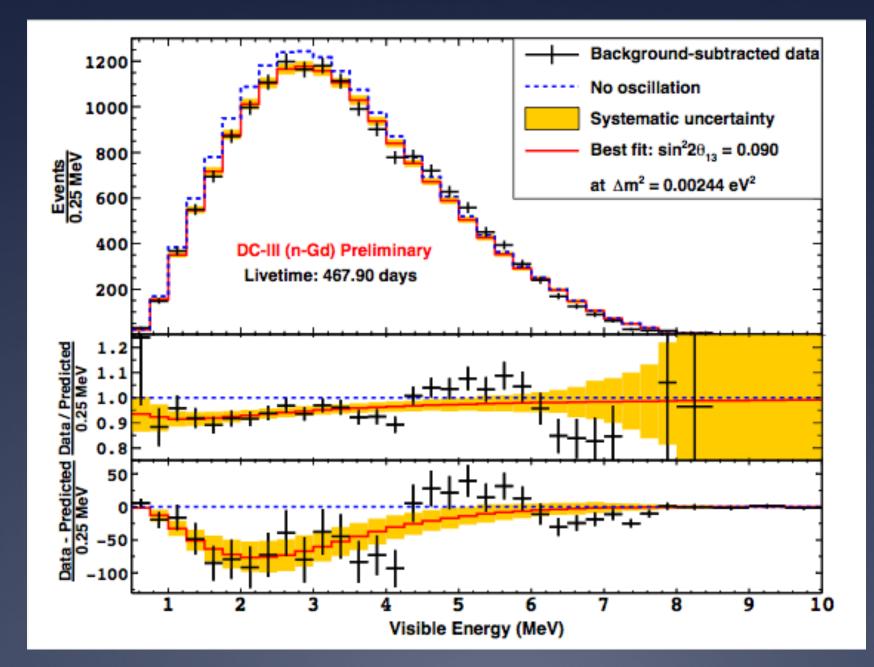
•ON data extrapolation
•reactor 2xOFF data
•independent BG model
measurements

most precise rate-only \rightarrow i.e. not spectral info used (independent technique + complementary to R+S)

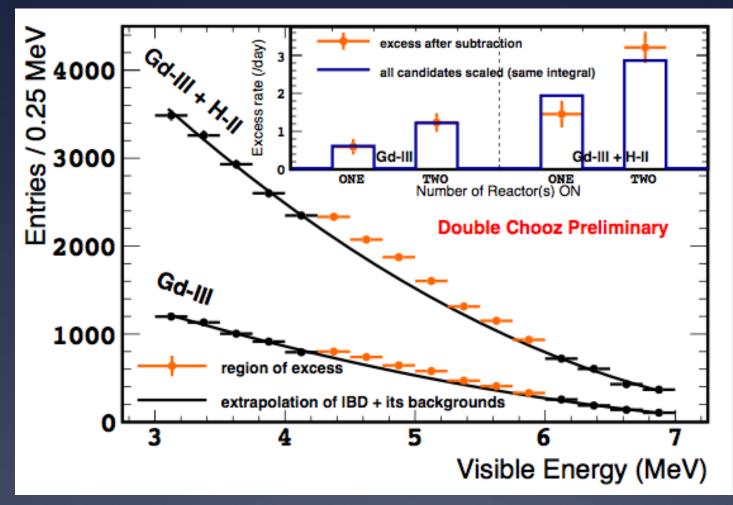

Rate+Shape results

•many improvements...

- •250keV binning and [0.5,20]MeV
- BG fully data driven (first time)
- signal treatment...
- new spectrum with ²³⁸U (low energy)
 - • Δm^2 from MINOS (confirmed T2K)
- •BG treatment...
- •full OFF data constraint (extra bin)
 - •accidental pull term
 - •rate: syst. dominated
 - •shape: data measured
 - fast-n pull term (~no stopping µs)
 - •rate: stats dominated
 - •shape: data measured


•Li+He pull term

- •rate: statistics driven
- •shape: data measured (no MC!!!)
- negligible ¹²B and BiPo
- •energy treatment...
 - •e+ energy model (via tuned MC) №
 - scintillator non-linearity NEWIL



sin²(20₁₃)=(0.09±0.03)

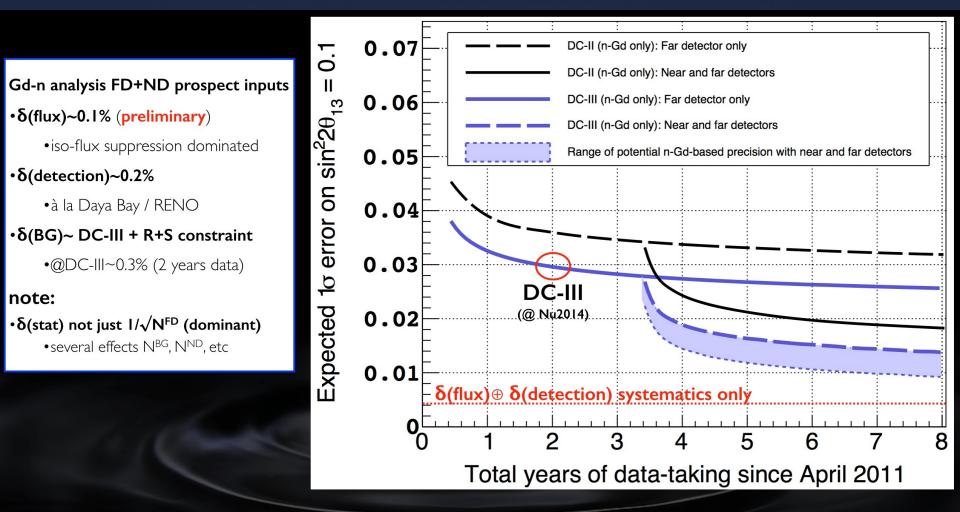
 $(\chi^2/n.d.f. = 51.4/40)$ background subtracted (BG systematic 3x smaller than previous results)

targeted studies...

search for empirical correlations in "excess" region ~[4,6]MeV (deficit region: no enough statistics)

no correlation was found on any BG-sensitive variable (time to last µ, etc)

strong correlation with reactor power→ more data (H) stronger correlation (empirical data-driven observation)


observed structure in data/MC over [4,6]MeV is not yet understood but, NOT impact on 013 measurement (many tests \rightarrow very robust)

source	status	
detection	discarded	
energy	disfavoured	
background	tension	
flux	possible?	
combination	possible	

considering only IBD neutrinos (v+p \rightarrow n+e⁺), this is consistent with an unaccounted reactor neutrino flux effect @ ~1.5 σ s.

other possible explanations (background, energy, etc) are disfavoured by dedicated consistency checks or tension

Prospected 1σ Error with ND

remarkable improvement of DC-III new analysis (wrt DC-II)

Iσ within [0.010,0.014] with 3years FD+ND: BG systematics dependent→ <u>statistics dominated</u> (rate+spectrum projection uses latest BG model fromDC-III)

conclusions

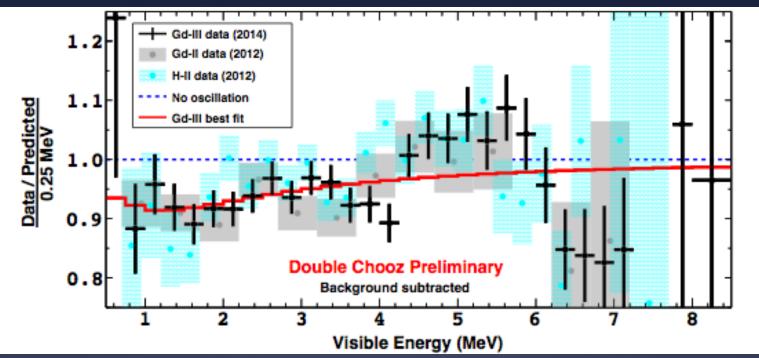
• DC-Gd-III improvements...

- 2x more statistics
- improves everything by factors relative to Gd-II (Kyoto, Nu2012)
 - higher efficiency, less BG (active BG rejection), data-driven BG estimations, etc.
 - δ(detection)^{III} ~2x more precise
 - δ(background)^{III} ~3x more precise
 - better energy reconstruction (non-linearities fully accounted)
- <u>analysis ready for ND</u> (more under preparation)
- other studies in progress: neutrino direction (thanks to the small number of reactors)..
 See the poster

• DC-Gd-III results...

• **R+S:** $\sin^2(2\Theta_{13}) = (0.09 \pm 0.03)$ [for BG=(1.43±0.15)day⁻¹]

• **RRM:** $sin^2(2\Theta_{13}) = (0.09^{+0.03}_{-0.04})$ [for BG=(1.55±0.17)day⁻¹]


• **RRM**(no BG model): $sin^2(2\Theta_{13}) = (0.06 \pm 0.04)$ [for BG = (0.90±0.39) day⁻¹]

• DC projections...

- ND from end of summer 2014
- major systematic cancellation boosting DC ≥ 0.01 as 1σ error on sin²(2 θ_{13}) (Gd-n only)
 - ●improvements in analysis→ <u>already in preparation</u>

BACK UP

DC-III-Ga VS DC-II-Ga and DC-II-F

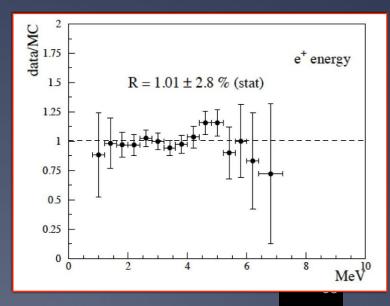
• not new!! just better resolved...

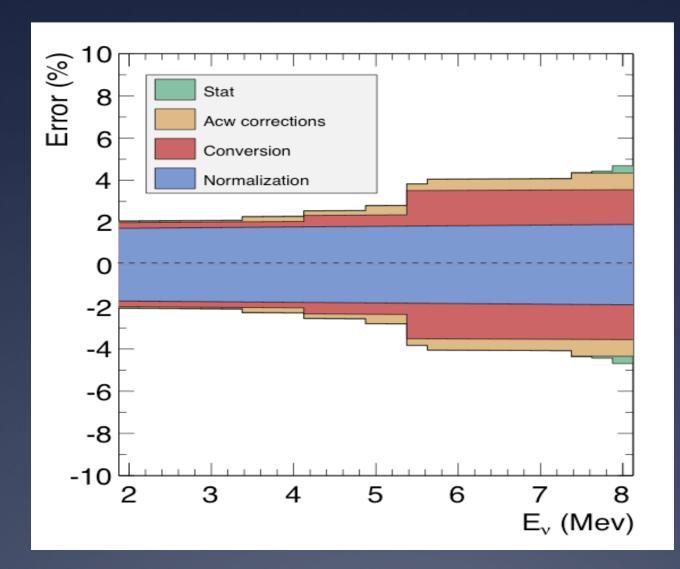
better stats (x2) (same flux info)

better energy (+50% better systematics)

better BGs (x3 better systematics)

• same DC-III-Gd pattern visible with...


•DC-II-Gd... [also DC-I-Gd]


• different selection (\rightarrow different BGs)

•DC-II-H...

- •very different BGs
- different detector volume (less precision)

• also CHOOZ? (same reactors, different everything)

R+3 results...(2)

Input C.V.	Input Error	Output C.V.	Output Error
-0.027	0.006	-0.026	+0.006, -0.005
1.012	0.008	1.011	+0.004, -0.007
-0.0001	0.0006	-0.0006	+0.0006, -0.0005
0.60	0.05	0.56	0.04
0.97	+0.41, -0.16	0.80	+0.15, -0.13
0.0701	0.0054	0.0708	0.0053
1.57	0.47	1.49	0.47
2.44	+0.09, -0.10	2.44	+0.09, -0.10
		0.090	+0.033, -0.028
		51.4/40 —	
	-0.027 1.012 -0.0001 0.60 0.97 0.0701 1.57	$\begin{array}{c cccc} -0.027 & 0.006 \\ \hline 1.012 & 0.008 \\ \hline -0.0001 & 0.0006 \\ \hline 0.60 & 0.05 \\ \hline 0.97 & +0.41, -0.16 \\ \hline 0.0701 & 0.0054 \\ \hline 1.57 & 0.47 \\ \end{array}$	-0.027 0.006 -0.026 1.012 0.008 1.011 -0.0001 0.0006 -0.0006 0.60 0.05 0.56 0.97 $+0.41, -0.16$ 0.80 0.0701 0.0054 0.0708 1.57 0.47 1.49 2.44 $+0.09, -0.10$ 2.44 $$ -0.090

improvement of Li+He constraint using spectral information (aided by rate) \rightarrow lower rate and more precise (improve S/BG too)

all results consistent between input and output (no tensions >1 σ)

all about 'LI (the rest is ~negligible)...

BG	rate (day	shape	energy range	S/BG (%)	δ(BG) (%)	suppresion (wrt Gd-II)
9	0.97	data (Li+He tag)	[0,12]MeV	2.61	0.78	1.3
fast-n stopped-µ	0.60±0.05	data (IV tag)	[0,20]MeV	1.62	0.13	1.9
accident al	0.070±0.005	data (off-time)	<3MeV	0.19	0.01	3.7
12	<0.003@68CL	neglected	[0,13]MeV	-	-	>7.0
BiPo	<0.1	neglected	<2MeV	-	-	same

Li+He (He $\leq 10\%$) dominates BG systematics budget by >90%

(energy spectrum data-driven \rightarrow poor statistics)

all other BG becoming negligible \rightarrow DC-III = IBDs + ⁹Li (effectively)

(fast-n is high but well know spectrum makes it innocuous)