Modeling the energy response of the Daya Bay antineutrino detectors Goal: establish positron energy scale from inverse beta decay (IBD) interactions in a 1-8 MeV energy range

Sören Jetter, IHEP, CAS, Beijing

- Detector targets enclosed by non-scintillating acrylic vessels
- Kinetic energy of positrons near acrylic vessels not fully converted to scintillation light ($\sim 13\%$ of all IBD positrons)
- Positron annihilation gammas with longer range can also deposit energy in vessels
- Introduces spectral distortion at around 1 MeV

Extracted from MC simulation

- Radioactive calibration sources at detector center
- Additional data from IBD + spallation neutrons,
- uniformly distributed in scintillators
- Alpha source data used to cross-check result

Constrained by gamma data

Emission and absorbtion/re-emission of Čerenkov light

Semi-empirical electron response model based on Birks law:

 $\frac{E_{\text{vis}}}{E_{\text{true}}} = f_{q}(E_{\text{true}}, k_{B}) + k_{C} \cdot f_{c}(E_{\text{true}}) \qquad \begin{array}{l} \mathsf{k}_{\mathsf{B}}: \text{ Birks constant} \\ \mathsf{k}_{\mathsf{C}}: \text{ Contribution from} \end{array}$

Energy converted to visible light E_{vis}

in scintillating

volumes E_{dep}

Energy seen by readout electronics E_{rec}

Non-linear response from **PMT readout electronics**

Electronics does not fully capture late secondary PMT hits ⇒ Slow scintillation light missed at high energies ⇒ Charge collection efficiency decreases with visible lighty Cannot be easily calibrated out on single channel level

 \Rightarrow Use effective exponential model as a function of total visible energy

 Ionizing positrons assumed to interact with scintillator in same way as electrons, full response computed from electron curve + 2 annihilation gammas:

 $E_{\rm vis}^{e^+} = E_{\rm vis}^{e^-} + 2 \cdot E_{\rm vis}^{\gamma} (0.511 \,{\rm MeV})$

- 4 curves numerically selected from 1-sigma phase space to parameterize shape uncertainties
- Sub-percent overall uncertainty from non-linear response model
- Reduced dependency on reactor models in oscillation analysis
- Crucial for measurement of reactor spectrum

on behalf of the Daya Bay collaboration

Scintillator and readout electronics model parameters constrained by fit to gamma+boron calibration data

- 1 Monoenergetic gamma lines from various sources
- 2 Continuous spectrum from ¹²B produced by muon spallation inside scintillating volumes

Validation with additional calibration data

- 53 MeV cutoff in michel electron spectrum from muon decays
- Continuous beta+gamma spectra from bismuth and thallium decays

- Čerenkov light

 Radioactive calibration sources employed regularly: ⁶⁸Ge, ⁶⁰Co, ²⁴¹Am¹³C Sources employed during special calibration periods: ¹³⁷Cs, ⁵⁴Mn, ⁴⁰K, ²⁴¹Am⁹Be, Pu¹³C Singles and correlated spectra in regular physics runs: ⁴⁰K, ²⁰⁸TI, neutron capture on H, C, Gd

- Benchtop scintillator response measurement using compton electrons
- Calibration of readout electronics response using flash ADC

background image: interior of one of the Daya Bay antineutrino detectors