

Cryogenic Light Detectors for background free searches

PHYSICS MOTIVATION

Bolometers are primed to search for rare events, like Dark Matter (DM) interactions or neutrino-less double beta decay (0vDBD):

- superb energy resolution (0.1%) and efficiency;
- large variety of targets;
- low intrinsic background;

Moreover, IF EQUIPPED WITH **SENSITIVE LIGHT DETECTORS**, they can REJECT THE BACKGROUND due to a's (for OvDBD) or to electrons (for DM interactions) exploiting the different light yield of different particles.

CUORE

PHONON MEDIATED KIDs

Kinetic Inductance Detectors (KIDs) are single layers superconductors biased with AC current;
KIDs can be sketched as LC circuits with proper resonant frequency;
The interaction of a photon breaks the Cooper pairs, modifying the resonance amplitude and phase [4,5];

S.DOYLE'S THESIS

 $(0.4-3) \times 10^5$

~2.5 GHz

 $2.9 \ mm^2$

300 µm Si wafer

[O.Cremonesi's talk and posters of

L.Canonica, J.Cushman, K.Han and K.Lim]

1 ton of TeO₂ bolometers operated at ~10 mK to search the 0vDBD of 130 Te [1]

Detector features:

- 988 5x5x5 cm³ TeO₂ arranged in 19 towers
- 206 kg of natural ¹³⁰Te
- Expected energy resolution of about 5 keV FWHM at 0vDBD energy
- Background target: 10⁻² counts/ keV/kg/y

Main source of background: a contaminations of the detector materials

BUT

the experience gained in view of CUORE showed that we are reaching the ultimate level in the development of cleaning procedures for the detector materials

ZnSe <u>scintillating</u> bolometers to search the 0vDBD of ⁸²Se (but advanced R&D also on the search of ¹⁰⁰Mo using ZnMoO₄) [2]

P
 WAchieve - zero background in the 0vDBD region (2997
 KeV

^wReach 90% CL sensitivity on 0∨DBD of the order of 10²⁵ years

Detector features:

36 ZnSe crystals -coupled to light detectors- for a total mass of ~17 kg;
almost 9 kg of 95% enriched ⁸²Se;

 expected resolution of 10 keV at 0vDBD energy FWHM

Excellent sensitivity, wide operation range, multiplexing;
The small active surface (1mm² x 40-200 nm) can be compensated by depositing the KIDs on a resistive substrate (5cm² x 100-300 µm) that convert photons into phonons, as done by Moore et al [6].

Phore	Si substrate	-9
-ons	KIDs Material	Al
5. 5,	KIDs thickness	40 nm

Resonant frequency

Single pixel area

Substrate

CURRENT STATUS

CALDER (Cryogenic wide-Area Light Detectors with Excellent Resolution) [7], began in March 2013

Instrumentation of a ³He/⁴He cryostat in Sapienza University (Rome), lowering its base temperature from 60 to 15 mK and installation of an optical fiber for energy calibration;
start prototypes fabrication at IFN-CNR (Rome) with 9 Al KIDs deposited on a 2x2 cm² Si substrate.
acquisition of the first pulses and

A	Ref -23.56 dB	^{S21} M1: 2480.41	4 MHz -18.12 dB	
ے۔ .og	-3.56			GOALS:
5.O #B/	-8.56			•optimiza
Cal Rdy	-18.6			and fabr
Data	-28.6			to achiev
۷g ۱	Resonances			eV;
	Start 2.480 GHz Points 10001	IF BW 1 kHz Output Power -20.0 dBm	Stop 2,580 GHz Swp 28.5 s	• improve

optimization of detector design and fabrication process in order to achieve energy resolution <80 eV;
improve of electronics and data-

acquisition (more sensitive

Why CALDER light detectors?

TeO₂ does not scintillate but electrons, in contrast to a's produce <u>Cherenkov radiation [3]</u> (N.Casali's poster)

790 g TeO₂ + LUCIFER-like light detector

Why CALDER light detectors?

LUCIFER could become a multi-purpose detector: OVDBD + Dark Matter searches

Light detectors with noise <20 eV would allow to reject the interactions due to electrons in the WIMPs region

development of acquisition/ analysis tools

NEXT STEP

KID pulsestrigger algorithm...);Tdecay_fast ~ 10 μs• improve energy calibrationTdecay_slow ~ 100 μs• system;• study the position• study the positionreconstruction capability.

Other materials, that will allow to reach better energy resolution ΔE , will be tested as soon as we will have a good control/understanding of the performances of Al KIDs.

	AI	TiN [non stoic.]	Ti+TiN [stoich]	Hf
Tc [K]	1.2	0.9	>0.4	0.12
L [pH/ square]	0.05	3	30	3

 $\Delta E \propto \frac{T_C}{\epsilon \sqrt{QL}}$

Materials with lower Tc (better ΔE) can be investigated by working at 10 mK;
Large Q and L can compensate the worsening of ΔE due to the loss of phonons in the PTFE holders of the Si substrate.

keV/kg/y

LIGHT DETECTORS REQUIREMENTS

Baseline noise	10-20 eV		
Active area	$5 \times 5 \ cm^2$		
Temperature range for detector operation	8-20 mK		
Number of channels	order of 1000		

+ excellent radio-purity and low heat load

None of existing light detectors fulfills all the requirements

PERSPECTIVES

- The LNGS R&D cryostat will be equipped for KIDs measurements;
- the CALDER light detectors will be coupled to CUORE and LUCIFER bolometers;
- the versatility of these light detectors will allow to use them in any other cryogenic experiment aiming at background suppression.
- 1. C. Arnaboldi, Nucl. Instrum. Meth. A. 518 (2004) 775

REFERENCES

- 2. J.W. Beeman, Advances in High Energy Physics, 2013 (http://dx.doi.org/10.1155/2013/237973)
- 3. T. Tabarelli de Fatis, Eur.Phys.J. C65 (2010) 359-361; arXiv:1403.5528
- 4. P.Day et al., Nature 425 (2003), 817-821
- 5. J.Zmuidzinas, Ann. Rev. Condens. Matter Phys. 3 (2012), 169-214
- 6. D.C. Moore et al., Appl. Phys. Lett. 100 (2012), 232601
- S.Di Domizio et al., J.Low.Temp.Phys, 2013 (DOI 10.1007/s10909-013-1076-2)

L. Cardani (laura.cardani@roma1.infn.it), E. Battistelli, F. Bellini, C. Bucci, M. Calvo, A. Cruciani, M.G. Castellano, I. Colantoni, A. Coppolecchia, C. Cosmelli, A. D'Addabbo, P. de Bernardis, S. Di Domizio, S. Masi, D. Pinci, C. Tomei, M. Vignati