Background Assessment for the PROSPECT Short-Baseline Reactor Experiment

N.S. Bowden for the PROSPECT Collaboration Lawrence Livermore National Laboratory, USA

Assessing PROSPECT Sites Close to Reactor Cores

- PROSPECT will deploy detectors close to research reactor cores
- → Limited overburden and possible reactor correlated background
- → Background measurements have been performed at 3 sites:

Gamma Ray Results

Spatial and Temporal Background Variations

See also:

K. Heeger: PROSPECT Summary & Physics Potential

T. Langford: PROSPECT Scintillator Development

Background Measurements Performed

Fast Neutron and Muon Results

- Fast neutron and muon fluxes vary with elevation and overburden as expected
- ATR Near has high elevation and limited overburden → highest flux
- Greater overburden at ATR Far
- compensates for elevation
- NIST, HFIR similar
- Measured fast neutron spectra consistent with surface reference data

Energy [keV

Shielding Concept Responds to Background Sources, Size & Weight Constraints

- Layer 1: Borated poly attenuates fast neutrons, captures thermal neutrons prior to high-Z material
- Layer 2: Lead attenuates γ-rays
- Layer 3: Lithiated poly attenuates muon induced neutrons from Pb, produces no capture γ-rays close to target

Conclusions

- Background measurements have been performed at potential near and far detector locations for PROSPECT at 3 U.S. reactor sites
- Reactor correlated γ-ray and neutron background sources have been identified
- Cosmogenic backgrounds vary with elevation and overburden as expected
- - BROOKHAVEN
 NATIONAL LABORATORY

Lawrence Livermore

National Laboratory

- Extensive site characterization is therefore essential to shielding design
- Targeted shielding applied to localized sources could have large impact
 - Localized thermal neutron shielding could reduce high energy \gamma-ray fluxes