
Theory and Phenomenology of Coherent Elastic Neutrino Nucleus Scattering

Gail McLaughlin

NC State

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$)

- neutrino interacts with nucleus through neutral current
- can't see neutrino afterward, but could see small kick to nucleus

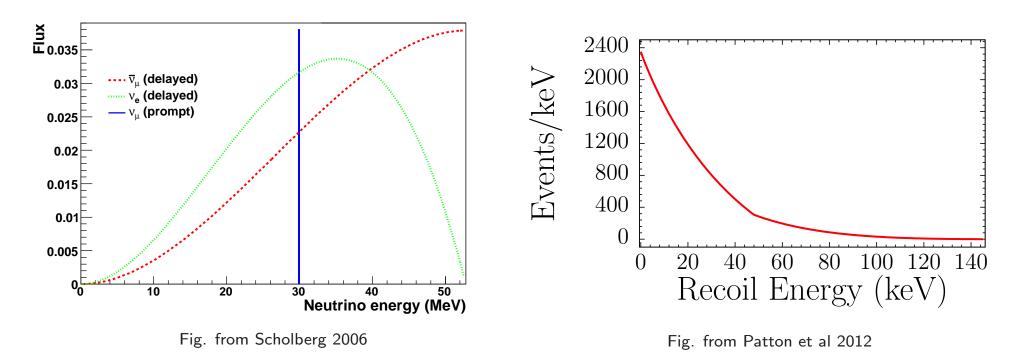
Basic cross section

Coherent elastic neutrino nucleus scattering cross section

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$

• E : neutrino energy, T : nuclear recoil

- $Q^2 = \frac{2E^2TM}{(E^2 ET)}$: squared momentum transfer
- $Q_W = N Z(1 4\sin^2 \theta_W)$: weak charge
- $F(Q^2)$: form factor largest uncertainty in cross section


Assumes a spin zero nucleus, no non-standard model interactions

Making a theoretical prediction

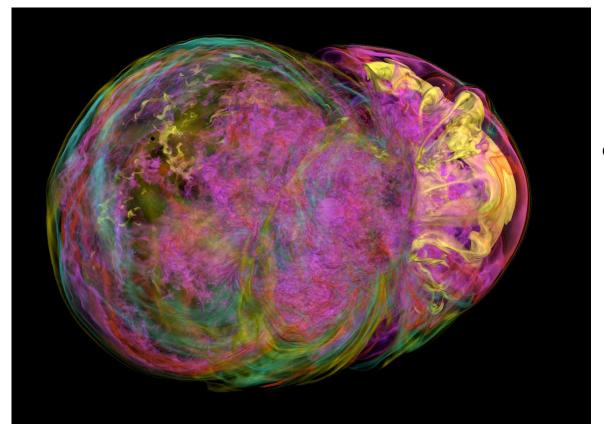
Fold cross section (previous slide) with incoming neutrino spectrum (e.g. left figure) to find nuclear recoil spectrum (right figure)

 $u s \text{ from } \pi/\mu \text{ decay at rest}$

Spectrum of nuclear recoils

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) appears many places

A few of these


- Opacity source in supernova neutrinos
- Mechanism for detecting supernova neutrinos
- Means for studying active-sterile oscillations
- Background in dark matter detectors

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) appears many places

A few of these

- Opacity source in supernova neutrinos
- Mechanism for detecting supernova neutrinos
- Means for studying active-sterile oscillations
- Background in dark matter detectors

Supernovae Neutrinos

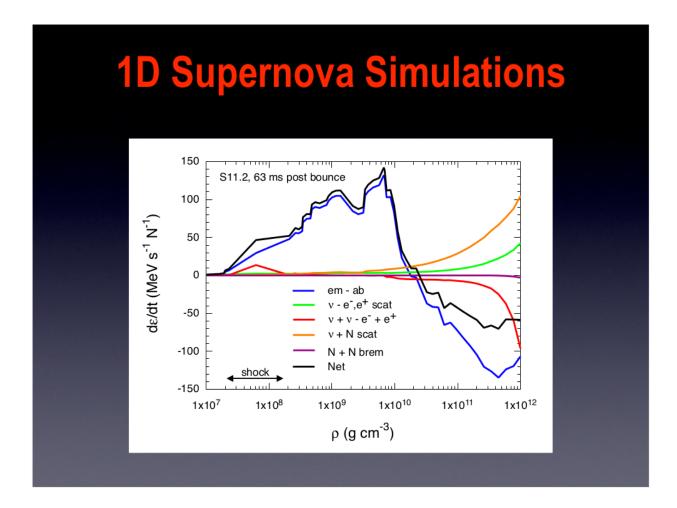
long mean free path core v_e v_e v_e v_μ v_μ v_τ v_τ short mean free path Schematic picture of neutrino emission from

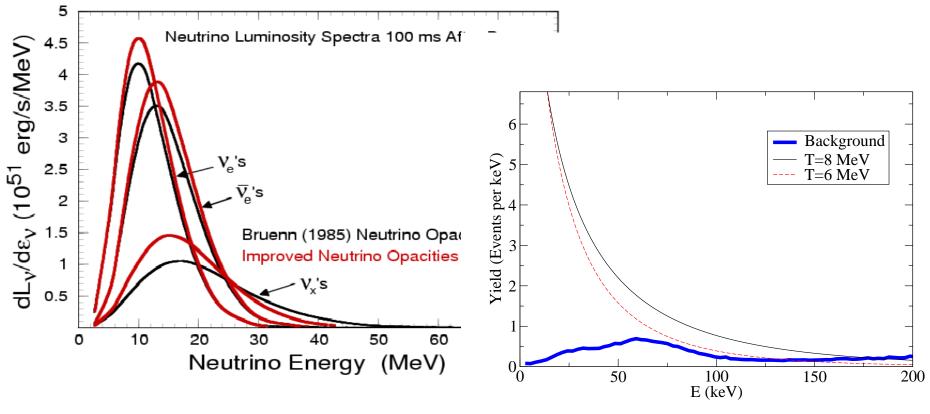
proto-neutron star

Figure from J. Blondin

Neutrinos are emitted from deep in the center

Coherent elastic neutrino nucleus scattering is an opacity source in supernova




Figure from S. Bruenn

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) appears many places

A few of these

- Opacity source in supernova neutrinos
- Mechanism for detecting supernova neutrinos
- Means for studying active-sterile oscillations
- Background in dark matter detectors

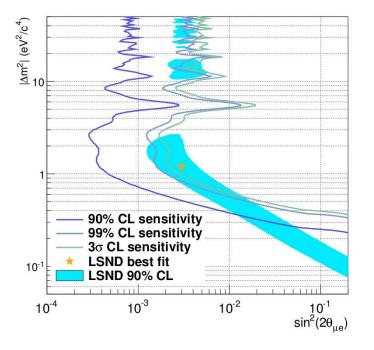
Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) for detecting supernova neutrinos

spectra from ORNL group

Event rates in CLEAN detector, Horowitz et al 2003

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) appears many places

A few of these


- Opacity source in supernova neutrinos
- Mechanism for detecting supernova neutrinos
- Means for studying active-sterile oscillations
- Background in dark matter detectors

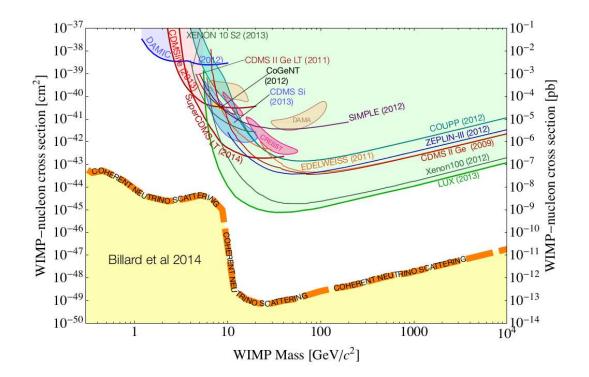
$CE\nu NS$ proposed as a mechanism for probing sterile neutrino oscillations

(Anderson et al 2012, Formaggio et al 2012)

Since $CE\nu NS$ measures only neutral current it is insensitive to active flavor transformation, ideal for studying active sterile transformation

Example: sensitivity to sterile oscillations using Ar at $Dae\delta$ alus

Anderson et al 2012

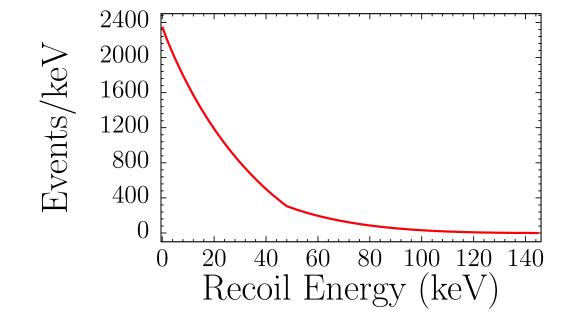

Coherent Elastic Neutrino Nucleus Scattering ($CE\nu NS$) appears many places

A few of these

- Opacity source in supernova neutrinos
- Mechanism for detecting supernova neutrinos
- Means for studying active-sterile oscillations
- Background in dark matter detectors

$CE\nu NS$ background is a limit on future dark matter sensitivity

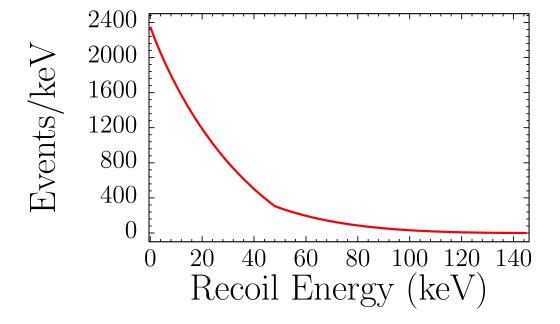
discussed in Snowmass Summary: WIMP Dark Matter Direct Detection



Even though we are counting on this process, it has never been detected!

Why not? Large cross section but need to see the small recoil of the nucleus

Beyond First Detection of $CE\nu NS$


- nonstandard ν interactions
- form factor

Beyond First Detection of $CE\nu NS$

• form factor

Nonstandard interactions

Some nonstandard interactions are currently poorly constrained.

Examples are vector couplings for electron neutrinos with up and down quarks, ϵ_{ee}^{uV} and ϵ_{ee}^{dV} , although there are other couplings that contribute as well. To define the NSI, use eq from Barranco et al 2006,

$$\mathcal{L}_{\nu Hadron}^{NSI} = -\frac{G_F}{\sqrt{2}} \sum_{\substack{\alpha,\beta=e,\mu,\tau}} \left[\bar{\nu}_{\alpha} \gamma^{\mu} (1-\gamma^5) \nu_{\beta} \right] * \\ \left(\varepsilon_{\alpha\beta}^{qL} \left[\bar{q} \gamma_{\mu} (1-\gamma^5) q \right] + \varepsilon_{\alpha\beta}^{qR} \left[\bar{q} \gamma_{\mu} (1+\gamma^5) q \right] \right)$$
(1)

The vector couplings are the only ones relevant for spin zero nuclei $\varepsilon_{\alpha\beta}^{qV} = \varepsilon_{\alpha\beta}^{qL} + \varepsilon_{\alpha\beta}^{qR}$.

Limits are
$$-1.0 < \epsilon_{ee}^{uV} < 0.6$$
 and $-0.5 < \epsilon_{ee}^{dV} < 1.2$

Nonstandard interactions

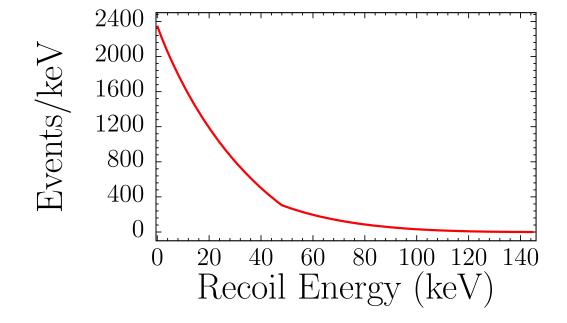
Continue considering example ϵ_{ee}^{uV} and ϵ_{ee}^{dV} . The zero order effect on CE ν NS is to change the standard model weak charge to an effective weak charge.

$$Q_W = N(1 - 2\epsilon_{ee}^{uV} - 4\epsilon_{ee}^{dV}) + Z(1 - 4\sin^2\theta_W + 4\epsilon_{ee}^{uV} + 2\epsilon_{ee}^{dV})$$

Recall:

$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi} M \left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2} \right] \frac{Q_W^2}{4} F^2(Q^2)$$

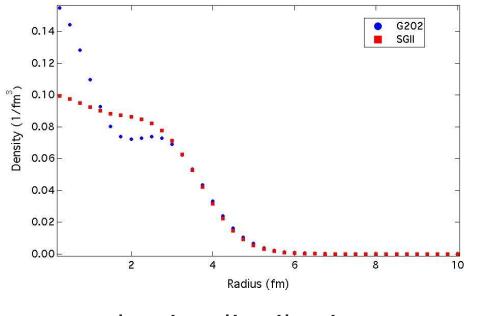
Nonstandard interactions


≩ູ80.2 0.15 0.1 0.05 Changing the size of Q_W effectively -0 changes overall magnitude of recoil -0.05 curve. Shows limits which could be -0.1 achieved after 100 kg/yr at SNS. with 5% sys Ne with 10% sys -0.15 0.15 0.2 0.050.1 ∈dV

Additional non-standard interactions such as the flavor changing neutral currents can be probed. Also, first order effect in changing relative contributions of neutron and proton form factor.

Beyond First Detection of $CE\nu NS$

- nonstandard ν interactions
- form factor



Form factor

Understanding the structure of the nucleus

Form factor, $F(Q^2)$ is the Fourier transform of the density distributions of protons and neutrons in the nucleus.

$$F(Q^2) = \frac{1}{Q_W} \int \left[\rho_n(r) - (1 - 4\sin^2\theta_W)\rho_p(r)\right] \frac{\sin\left(Qr\right)}{Qr} r^2 dr$$

 $\langle R^2 \rangle_{SGII}^{1/2} =$ 3.405 fm $\langle R^2 \rangle_{G202}^{1/2} =$ 3.454 fm

Form factor

Form factor, $F(Q^2)$ is the Fourier transform of the density distributions of protons and neutrons in the nucleus.

$$F(Q^2) = \frac{1}{Q_W} \int \left[\rho_n(r) - (1 - 4\sin^2\theta_W)\rho_p(r)\right] \frac{\sin\left(Qr\right)}{Qr} r^2 dr$$

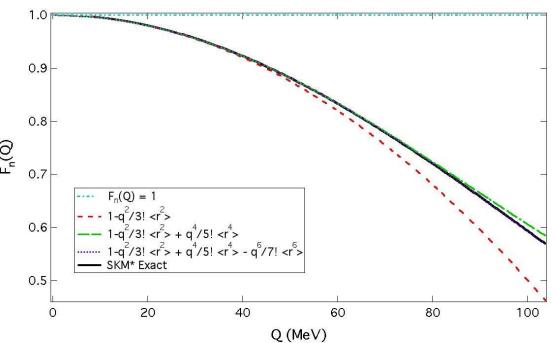
- Proton form factor term is suppressed by $1 4\sin^2(\theta_W)$
- Neutron form factor is not suppressed

 $CE\nu NS$ can be used to determine the form factor Amanik et al 2009

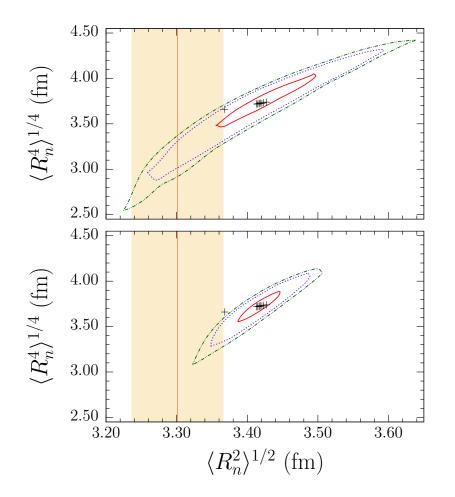
Form factor

$$F(Q^2) = \frac{1}{Q_W} \int \left[\rho_n(r) - (1 - 4\sin^2\theta_W)\rho_p(r)\right] \frac{\sin(Qr)}{Qr} r^2 dr$$

- Proton form factor can be measured by electromagnetic probes.
- Neutron form factor is less well known:
- Neutron scattering many measurements requires theory to go from cross section to form factor
- Parity violating electron scattering PREX at Jlab Pb at one Q^2 , extract $A_{PV} \sim 0.65 \times 10^{-6}$ then determine neutron radius, now also CREX at Jlab on Ca


 $C\nu NS$ recoil curve can be fit: neutron radius and higher moments

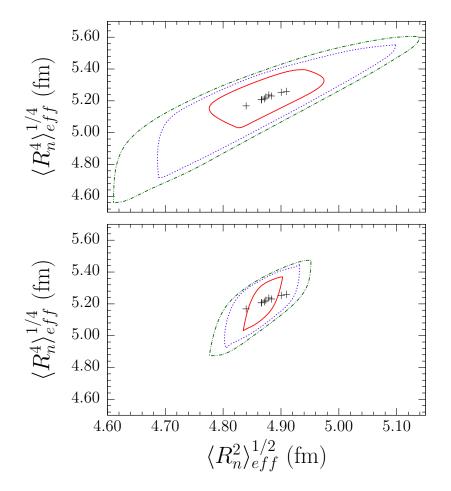
Nuclear-Neutron form factor from $CE\nu NS$


Taylor expand the sin(Qr) form factor:

 $F_n(Q^2) = \frac{1}{Q_W} \int \rho_n(r) \frac{\sin(Qr)}{Qr} r^2 dr \approx \frac{N}{Q_W} (1 - \frac{Q^2}{3!} \langle R_n^2 \rangle + \frac{Q^4}{5!} \langle R_n^4 \rangle - \dots)$

Moments of the density distribution, $\langle R_n^2 \rangle$, and the density distribution, $\langle R_n^2 \rangle$, and the distribution, $\langle R_n^4 \rangle$, and the distribution of the distribut

Liquid argon scenario



3.5 tonnes argon 16m from SNS,
18m from Daeδalus, 30m from ESS
for one year. Shows 40%, 91% and
97% confidence contours. Crosses
are theory predictions.

Fig. from Patton et al 2012

Band is measurement from neutron scattering. Top plot: normalization of neutrino flux not known, bottom plot normalization of neutrino flux known.

Xenon is more constraining

300 kg Xenon 16m from SNS, 18m
from Daeδalus, 30m from ESS for
one year. Shows 40%, 91% and
97% confidence contours. Crosses
are theory predictions.

fig. from Patton et al 2012

Top plot: normalization of neutrino flux not known, bottom plot normalization of neutrino flux known.

Beyond NSIs and the form factor

- Nonstandard ν interactions
- Form factor

$$Q_W = N + Z(1 - 4\sin^2\theta_W)$$

- $\sin^2 \theta_W$
- ν magnetic moment

Beyond NSIs and the form factor

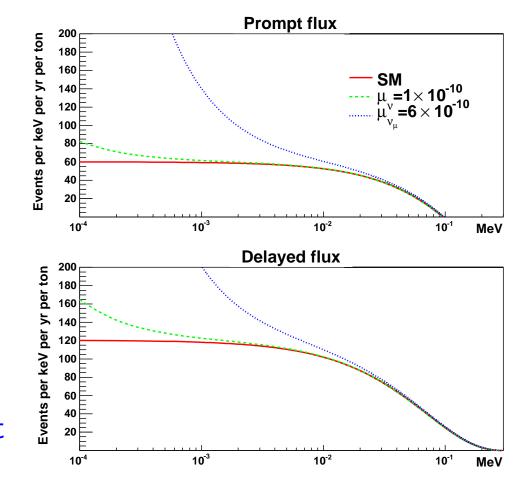


fig from Scholberg 2006

Look for excess events at low recoil energy using neutrinos from stopped π/μ

- Nonstandard ν interactions
- Form factor
- $\sin^2 \theta_W$
- ν magnetic moment

Summary

- Coherent elastic neutrino nucleus scattering is not yet detected, but in many communities such as supernova simulation, supernova detection, active-sterile oscillations, dark matter detection it is assume to exist as predicted by standard model
- Going beyond a first detection...
 - non-standard interactions
 - form factor
- and beyond these...
 - Weinberg angle
 - neutrino magnetic moment
- overall, a rich physics opportunity from the theory point of view