Belgium

IIHE-ULB Brussels $\quad \square$| Italy |
| ---: |
| Bari |
| Bologna |
| Frascati |
| L'Aquila, |
| LNGS |

Russia INR RAS Moscow LPI RAS Moscow ITEP Moscow SINP MSU Moscow JINR Dubna Switzerland
Bern Turkey METU, Ankara

Observation of $\mathrm{v}_{\mu} \rightarrow \mathrm{v}_{\mathrm{T}}$ oscillation with OPERA

On behalf of the OPERA Collaboration
 S.Dusini - INFN Padova

A
XXVI International Conference on Neutrino Physics and Astrophysics

Neutrino appearance

Neutrino oscillation pioneered via neutrino disappearance Super-KAMIOKANDE, MACRO....
...and for long time the disappearance dominated the scene SK, SNO, MINOS, KamLAND, Borexino....

Hard life for appearance:
Solar scale:
$v_{e} \rightarrow v_{\mu}$: below threshold for μ production
Atmospheric scale: experimentally difficult
$v_{\mu} \rightarrow v_{\mathrm{e}}$: subleading (T2K)
$v_{\mu} \rightarrow v_{T}$: with cosmic ray neutrinos (SK) statistical separation from large background
$v_{\mu} \rightarrow v_{T}$: LBL beam neutrinos (OPERA) with tau lepton identification on an event by event basis

The neutrino appearance is a key observation to establish the neutrino oscillation phenomenon.

CNGS beam

Beam requirements

1) high neutrino energy,
2) long baseline,
3) high beam intensity,

High energy beam optimized to maximize tau production

$$
P\left(v_{\mu} \rightarrow v_{T}\right) \sim O(1) \%
$$

τ detection
 $\nu_{\mu} \xrightarrow{\text { oscillation }}$ $\nu_{\tau}+N \rightarrow \tau^{-}+X$

The separation of the $v_{\tau} C C$ from the dominant v_{μ} interactions event-by-event, of the peculiar decay topology of the τ.

Hybrid detector
micrometric resolution

Emulsion Cloud Chamber

~150000 bricks (1.25 kton) + electronic detectors

Collected data and status of the analysis

Year	P.O.T. $\left(10^{19}\right)$	SPS Eff.	Beam days	v interactions
2008	1.7	61%	123	1931
2009	3.53	73%	155	4005
2010	4.09	80%	187	4515
2011	4.75	79%	243	5131
2012	3.86	82%	257	3923
Total	17.97	77%	965	19505

80% of the design
$\longrightarrow ~ 87 \%$ predicted in the bricks
Scanning strategy
Bricks ordered by the probability to contain the neutrino interaction 2008-2009 : analysis of the $1^{\text {st }}$ and $2^{\text {nd }}$ most probable brick 2010-2012 : analysis of the $1^{\text {st }}$ brick ($2^{\text {nd }}$ brick postponed)

Vertex location and decay topology Search

The first two steps of the analysis chain are:

1. location of neutrino interaction
2. search of decay topologies (e.g. large Impact Parameter-IP)

Full MC simulation including all steps of the scanning procedure followed in the scanning labs.

v_{e} search

v_{e} beam contamination $\sim 0.9 \%$

v_{e} searched in 505 ($\sim 50 \%$ full statistic) neutrino interaction without the muon in the final state
Extension to full statistic in progress

		$\mathrm{E}<20 \mathrm{GeV}$
Candidate v_{e}	19	4
Expected	$19.8 \pm 2.8(\mathrm{sys})$	4.6
$\sin ^{2}\left(2 \theta_{\text {new }}\right)<7.2 \times 10^{-3}(90 \% \mathrm{CL})$		
$\sin ^{2}\left(2 \theta_{13}\right)<0.44(90 \% \mathrm{CL})$		

Oscillation results

variable	$\tau \rightarrow 1 h$	$\tau \rightarrow 3 h$	$\tau \rightarrow \mu$	$\tau \rightarrow e$
lepton-tag		No μ or e at the primary vertex		
$z_{\text {dec }}(\mu \mathrm{m})$	$[44,2600]$	<2600	$[44,2600]$	<2600
$p_{T}^{\text {miss }}(\mathrm{GeV} / c)$	$<1^{\star}$	$<1^{\star}$	$/$	$/$
$\phi_{l H}(\mathrm{rad})$	$>\pi / 2^{\star}$	$>\pi / 2^{\star}$	$/$	$/$
$p_{T}^{2 r y}(\mathrm{GeV} / c)$	$>0.6(0.3)^{*}$	$/$	>0.25	>0.1
$p^{2 r y}(\mathrm{GeV} / c)$	>2	>3	>1 and <15	>1 and <15
$\theta_{\text {kink }}(\mathrm{mrad})$	>20	<500	>20	>20
$m, m_{\text {min }}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$	$/$	>0.5 and <2	$/$	$/$

Kinematical selection cuts kept fixed since beginning of the experiment.

Data sample: 2008/09: $1^{\text {st }}$ and $2^{\text {nd }}$ probable brick 2010/11/12 : $1^{\text {st }}$ probable brick 5522 events analysed

Expected 2.1 ± 0.4
$\left(\Delta m_{23}{ }^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}, \theta_{23}=\pi / 4\right)$ Observed 4

$3^{\mathrm{rd}} \nu_{\tau}$ candidate $(\tau \rightarrow \mu)(2013)$
PHYSICAL REVIEW D 89 (2014) 051102(R)

$$
41
$$

IT upstream module \underbrace{E}_{x}

Negative muon measured in the muon spectrometer

Neutrino 201 First measurement of the lepton charge in appearance mode

	Values	Selection	Kinematics of
P daughter ($\mathrm{GeV} / \mathrm{c}$)	$6.0+2.2$	>2	
Kink $P_{+}(\mathrm{GeV} / \mathrm{c})$	$0.82+0.30$	>0.6	$3^{\text {rd }} \nu_{\tau}$ candidate$(\tau \longrightarrow h)$
P_{+}at 1ry ($\mathrm{GeV} / \mathrm{c}$)	$0.55+0.30$	< 1.0	
Phi (degrees)	$166+2$	>90	
Kink angle (mrad)	137 ± 4	> 20	
Decay position (um)	1090 ± 30	< 2600	dova 12

Values Selection

Decay position ($\mu \mathrm{m}$)
1090 ± 30
< 2600

Kinematics of
$3^{\text {rd }} \nu_{\tau}$ candidate
($\tau \rightarrow h$)

Background to

 $\mu^{-}, e, h, 3 h$
Production of charmed particles in CC interactions (affect all decay channels)

MC tuned on CHORUS data (cross section and fragmentation functions), validated with measured charm events in OPERA

FLUKA + test beam data (OPERA bricks exposed to pion beams)

MC tuned on old measurements on lead form factor + dedicated test beam (in progress)

Data sample:

2008/09: 398 (0μ events) +1553 (1μ events)
2010/11/12: 582 (0μ events) +2153 (1μ events)
The expected signal and background is normalized to the number of located events

$$
n^{0 \mu}\left(\nu_{\tau}^{C C}\right)=\frac{\left\langle\sigma\left(\nu_{\tau}^{C C}\right)\right\rangle}{\left\langle\sigma\left(\nu_{\mu}^{C C}\right)\right\rangle} \frac{\left\langle\epsilon^{0 \mu}\left(\nu_{\tau}^{C C}\right)\right\rangle}{\left\langle\epsilon^{0 \mu}\left(\nu_{\tau}^{C C}\right)\right\rangle+\alpha\left\langle\epsilon^{0 \mu}\left(\nu_{\tau}^{N C}\right)\right\rangle} n^{0 \mu} \quad \alpha=\frac{N C}{C C}
$$

Decay channel	Expected signal $\Delta \mathrm{m}_{23}{ }^{2}=2.32 \mathrm{meV}^{2}$	Total background	Observed
$\tau \rightarrow \mathrm{h}$	0.4 ± 0.08	0.033 ± 0.006	2
$\tau \rightarrow 3 \mathrm{~h}$	0.57 ± 0.11	0.155 ± 0.03	1
$\tau \rightarrow \mu$	0.52 ± 0.1	0.018 ± 0.007	1
$\tau \rightarrow \mathrm{e}$	0.61 ± 0.12	0.027 ± 0.005	0
Total	2.1 ± 0.42	0.23 ± 0.04	4

Two statistical method:

- Fisher combination of single channel p-value
- Likelihood ratio

$$
p \text {-value }=1.03 \times 10^{-5} \text { of no oscillation }
$$

no oscillation excluded at $4.2 \sigma \mathrm{CL}$

First measurement of $\Delta m^{2}{ }_{32}$ with tau appearance

$N_{\nu_{\tau}} \propto \int \phi(E) \sin ^{2}\left(\frac{\Delta m_{32}^{2} L}{4 E}\right) \epsilon(E) \sigma(E) d E$

$$
\propto\left(\Delta m_{32}^{2}\right)^{2} L^{2} \int \phi(E) \epsilon(E) \frac{\sigma(E)}{E^{2}} d E
$$

OPERA Off-peak
L/<E> ~ $43 \mathrm{Km} / \mathrm{GeV}$
$(\mathrm{L} /\langle E\rangle)_{\text {peak }} \sim 500 \mathrm{Km} / \mathrm{GeV}$
strong dependence on $\Delta m^{2} \rightarrow$ measure Δm^{2} with counting experiment
$90 \% \mathrm{CL}$ intervals on $\Delta \mathrm{m}^{2}{ }_{32}$ assuming $\sin 2\left(2 \theta_{23}\right)=1$
Feldman\&Cousin

$$
[1.8-5] \times 10^{-3} \mathrm{eV}^{2}
$$

Sterile neutrinos

Tau appearance in the presence of sterile neutrino (3+1)
Solar driven oscillation neglected $\Delta_{21} \sim 0$

$$
\begin{array}{rr}
\sim \text { standard oscillation } & \text { pure exotic oscillation } \\
\boldsymbol{P}_{\nu_{\mu} \rightarrow \nu_{\tau}}=4\left|U_{\mu 3}\right|^{2}\left|U_{\tau 3}\right|^{2} \sin ^{2} \frac{\Delta_{31}}{2}+4\left|U_{\mu 4}\right|^{2}\left|U_{\tau 4}\right|^{2} \sin ^{2} \frac{\Delta_{41}}{2}
\end{array}
$$

Profile likelihood using Tau rate only

$$
\Delta m_{32}^{2}=2.32 \times 10^{-3} \mathrm{eV}^{2}
$$

$90 \% \mathrm{CL}$ bounds on $\mathrm{U}_{\tau 4}$ and $\mathrm{U}_{\mu 4}$
interference
terms

Two extreme values $(\pi / 2,3 \pi / 2)$ of

$$
\begin{aligned}
& +8 \Re\left[U_{\mu 4}^{*} U_{\tau 4} U_{\mu 3} U_{\tau 3}^{*}\right] \sin ^{2} \frac{\Delta_{31}}{2} \sin ^{2} \frac{\Delta_{41}}{2} \\
& +4 \Im\left[U_{\mu 4}^{*} U_{\tau 4} U_{\mu 3} U_{\tau 3}^{*}\right] \sin \Delta_{31} \sin ^{2} \frac{\Delta_{41}}{2}
\end{aligned}
$$

Choosing a particular representation (same as MINOS)

$$
\boldsymbol{U}=\boldsymbol{R}_{\mathbf{3 4}}\left(\boldsymbol{\theta}_{\mathbf{3 4}}\right) \boldsymbol{R}_{\mathbf{2 4}}\left(\boldsymbol{\theta}_{\mathbf{2 4}, \boldsymbol{\delta}_{\mathbf{2}}}\right) \boldsymbol{R}_{14}\left(\theta_{14}\right) \boldsymbol{R}_{\mathbf{2 3}}\left(\boldsymbol{\theta}_{\mathbf{2 3}}\right) \boldsymbol{R}_{\mathbf{1 3}}\left(\boldsymbol{\theta}_{\mathbf{1 3}}, \boldsymbol{\delta}_{\mathbf{1}}\right) \boldsymbol{R}_{12}\left(\theta_{12}, \delta_{3}\right)
$$

$\Delta_{21} \sim 0$ (solar oscillation) $\mathrm{s}_{14} \sim 0$ (reactor anomaly)
$\rightarrow \delta_{1}=0$

$$
U=\left[\begin{array}{lll}
U_{e 1} & U_{e 2} & - \\
U_{\mu 1} & U_{\mu 2} & -s_{14} s_{13} e^{-i \delta_{1}} \frac{c_{14} s_{13}}{s_{24} e^{-i \delta_{2}}+c_{13} s_{23} c_{24}}-\frac{s_{14}}{c_{14} s_{24}} e^{-i \delta_{2}} \\
U_{\tau 1} & U_{\tau 2} & -s_{14} c_{24} s_{34} s_{13} e^{-i \delta_{1}}-c_{13} s_{23} s_{34} s_{24} e^{i \delta_{2}}+c_{13} c_{23} c_{34} \\
U_{s 1} & U_{s 2} & -s_{14} c_{24} c_{34} s_{13} e^{-i \delta_{1}}-c_{13} s_{23} c_{34} s_{24} e^{c_{2}}-c_{13} c_{23} c_{24} s_{34} \\
c_{14} c_{24} c_{34}
\end{array}\right]
$$

Effective mixing

$$
\Delta m_{41}^{2}=1 \mathrm{eV}^{2}
$$

Conclusions

- OPERA has recorded neutrino interaction equivalent to $\sim 1.8 \times 10^{20}$ pot delivered by CNGS beam from 2008 to 2012 (80% of nominal)
- $4 \nu_{\tau}$ candidates observed so far with a background of 0.23 event.
- No oscillation hypothesis excluded at 4.2σ

Observation of ν_{τ} appearance

- First measurement of $\Delta m^{2} 31=[1.8-5.0] \times 10^{-3} \mathrm{eV}^{2}(90 \% \mathrm{CL})$ for $\sin ^{2}\left(2 \theta_{23}\right)=1$ using neutrino appearance
- Constrain on sterile neutrinos: first limits on $\left|U_{\mu 4}\right|^{2}\left|U_{T 4}\right|^{2}$ from direct measurement of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation

Thank you for your attention

Backup

Visible energy of all the candidates

Sum of the momenta of charged particles and γ 's measured in emulsion

Hadron interaction background

Estimated with Fluka MC and validated with test beam data (OPERA bricks exposed to pion beams)

Background to $\tau \rightarrow h=3.09 \times 10^{-5} /$ located events v $\tau \rightarrow 3 \mathrm{~h}=1.5 \times 10^{-5} /$ located events

Hadron interaction rate suppressed by
 search of large angle tracks produced by nuclear fragments

Large angle muon scattering background

No measurements except an upper limit from scattering on Cu: S.A. Akimenko et al., NIM A243 (1986) 518 ($<10^{-5}$ in lead). 10^{-5} rate used
Plan to revise this number by an experimental measurement with emulsion

Track features

		$\Delta \mathrm{Z}(\mu \mathrm{m})$	$\delta \theta_{\text {RM }}(\mathrm{mrad})$	IP ($\mu \mathrm{m}$)	IP Resolution ($\mu \mathrm{m}$)	Attachment	$M=0.59_{-0.15}^{+0.20} \mathrm{GeV} / \mathrm{c}^{2}$
$\gamma 1$	To 1ry	676	21.9	2	8	OK	
$\gamma 2$	To 1ry	7176	9.2	33	43	OK	Not a single π^{0}
	To 2ry	6124	9.2	267	36	Excluded	

$1^{\text {st }} v_{T}$ candidate $(\tau \rightarrow h)(2010) \bigcirc$ Beam view

$2^{\text {nd }} \nu_{\tau}$ candidate (2012)
JHEP 11 (2013) 036 $(\tau \rightarrow 3 h)$

Kinematics of $3^{\text {rd }} \nu_{\tau}$ candidate $(\tau \rightarrow \mu)$

Kink angle (mrad)
decay length ($\mu \mathrm{m}$)

$\mathrm{P} \mu(\mathrm{GeV} / \mathrm{c})$	2.8 ± 0.2
$\mathrm{P}+(\mathrm{MeV} / \mathrm{c})$	690 ± 50
φ (degrees)	154.5 ± 1.5

Search for highly ionizing particles in hadron interactions

Hadron interactions background can be reduced by increasing the detection efficiency of protons and nuclear fragments emitted in the cascade of intra-nuclear interactions and in nuclear evaporation process

Up stream of interaction point
$>$ Specific tool for scanning
$>$ Validation on the test-beam sample of hadronic interactions $>$ No highly ionizing particle found in OPERA v_{τ} candidate S.Dusini - INFN Padova

Oscillation Project with Emulsion tRacking Apparatus

