Neutrino mass hierarchy: Theory and phenomenology.

Walter Winter DESY, Zeuthen

Neutrino 2014, Boston, MA, USA June 4, 2014

Contents

- > Why would one like to know the mass ordering?
- > How to measure the mass ordering?
- > Technological approaches to measure the mass ordering

Neutrino masses: Ordering versus Hierarchy

- The (atmospheric) mass ordering is unknown (normal or inverted)
- The absolute neutrino mass scale is unknown (< eV). Often parameterized by lightest neutrino mass: m₁ or m₃
- > In theory: three cases
 - Normal hierarchy: $m_1 < (\Delta m_{21}^2)^{0.5}$ (ordering: normal)
 - Inverted hierarchy: $m_3 << |\Delta m_{31}^2|^{0.5}$ (ordering: inverted)
 - (Quasi-)**Degenerate**: $m_1 \sim m_2 \sim m_3 >> |\Delta m_{31}^2|^{0.5}$ (**ordering**: normal or inverted)

[plus some recently growing interest in the transition regime: m_1 (for NO) ~ $|\Delta m_{31}^2|$]

Lower bound on neutrino neutrino masses from \Delta m₃₁² ~ 0.0024 eV²: Normal hierarchy: m₃ ~ 0.05 eV Inverted hierarchy: m₁, m₂ ~ 0.1 eV

 $\Delta m_{ij}^2 = m_i^2 - m_j^2$

Why would one like to know the mass ordering?

Origin of neutrino mass

(simple example: effective Majorana mass, charged leptons diagonal)

> Neutrino masses read, roughly (ϵ : hierarchy parameter)

$$\begin{split} M_{\nu}^{\text{diag}} &\simeq m_3 \begin{pmatrix} \varepsilon^2 \\ & \varepsilon \\ & & 1 \end{pmatrix} & M_{\nu}^{\text{diag}} \simeq m_1 \begin{pmatrix} 1 \\ & 1 \\ & & \varepsilon \end{pmatrix} & M_{\nu}^{\text{diag}} \simeq m_3 \begin{pmatrix} 1 \\ & & 1 \\ & & 1 \end{pmatrix} \\ & \text{Hierarchy: normal} & \text{Hierarchy: inverted} & \text{Degenerate case} \end{split}$$

$$\begin{split} & \text{Neutrino mixings, roughly} \\ (\text{limit } \theta_{13} \sim 0) & U_{\text{PMNS}} \simeq \begin{pmatrix} \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{3}} & 0 \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} \end{pmatrix} \\ & \text{Tri- bi- maximal} \end{split}$$

$$\begin{aligned} & \text{Consequences for } M_{\nu} = U_{\text{PMNS}} M_{\nu}^{\text{diag}} U_{\text{PMNS}}^{T} & \text{(to leading order)} \\ & M_{\nu} \simeq \begin{pmatrix} \varepsilon & \varepsilon & \varepsilon \\ \varepsilon & 1 & 1 \\ \varepsilon & 1 & 1 \end{pmatrix} & M_{\nu} \simeq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \\ & \text{Hierarchy: normal} & \text{Hierarchy: inverted} & \text{Degenerate case} \end{split}$$

> Very different structure of neutrino mass matrix!

Mass hierarchy as texture and model discriminator

Typically re-covered in more complicated cases, e.g. including charged lepton mixings, θ₁₃>0 etc:

(example from hep-ph/0612169)

- Translates into flavor symmetry models (Albright, Chen, hep-ph/0608137) See also: talk by Morimitsu Tanimoto
- Neutrino mass ordering is the prime model discriminator!

TABLE I: Mixing Angles for Models with Lepton Flavor Symmetry.

Referen	ce	Hierarchy	$\sin^2 2\theta_{23}$	$\tan^2\theta_{12}$	$\sin^2 heta_{13}$
Anarchy Model:					
dGM	[18]	Either			≥ 0.011 @ 2σ
$L_e - L_\mu$	$-\mathbf{L}_{\tau}$	Models:			
BM	[35]	Inverted			0.00029
BCM	[36]	Inverted			0.00063
GMN1	[37]	Inverted		≥ 0.52	≤ 0.01
GL	[38]	Inverted			0
\mathbf{PR}	[39]	Inverted		≤ 0.58	≥ 0.007
S ₃ and S	S2 and S4 Models:				
CFM	[40]	Normal			0.00006 - 0.001
HLM	[41]	Normal	1.0	0.43	0.0044
		Normal	1.0	0.44	0.0034
KMM	[42]	Inverted	1.0		0.000012
MN	[43]	Normal			0.0024
MNY	[44]	Normal			0.000004 - 0.000036
MPR	[45]	Normal			0.006 - 0.01
RS	[46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02
		Normal	$\theta_{23} \le 45^{\circ}$		0
TY	[47]	Inverted	0.93	0.43	0.0025
Т	[48]	Normal			0.0016 - 0.0036
A ₄ Tetrahedral Models:					
ABGMP	[49]	Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037
AKKL	[50]	Normal			0.006 - 0.04
Ma	[51]	Normal	1.0	0.45	0
SO(3) N	lode	ls:			
М	[52]	Normal	0.87 - 1.0	0.46	0.00005
Texture Zero Models:					
CPP	[53]	Normal			0.007 - 0.008
		Inverted			≥ 0.00005
		Inverted			≥ 0.032
WY	[54]	Either			0.0006 - 0.003
		Either			0.002 - 0.02
		Either			0.02 - 0.15

Neutrinoless double beta decay

- > If neutrinos are Majorana neutrinos, they will mediate $0\nu\beta\beta$.
- > The $0\nu\beta\beta$ rate depends on the hierarchy in degenerate regime:

Impact of direct mass ordering (MO) measurement

How to measure the mass ordering?

Current status and perspectives for existing equipment

> Indication for δ_{CP} , no evidence for mass hierarchy

> Potential of existing equipment

Method 1: Matter effects in neutrino oscillations

- Ordinary matter:
 electrons, but no μ, τ
- Coherent forward scattering in matter: Net effect on electron flavor
- Hamiltonian in matter (matrix form, flavor space):

$$\mathcal{H}(n_e) = U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \frac{\Delta m_{21}^2}{2E} & 0 \\ 0 & 0 & \frac{\Delta m_{31}^2}{2E} \end{pmatrix} U^{\dagger} + \begin{pmatrix} V(n_e) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(ele per nucle V_{\nu} = $+\sqrt{2}G_F n_e, \ V_{\overline{\nu}} = -\sqrt{2}G_F n_e, \ n_e = Y \rho_j / m_N$

Y: electron fraction ~ 0.5 (electrons per nucleon)

Parameter mapping ... for two flavors, constant matter density

Walter Winter | Neutrino 2014 | 04.06.2014 | Page 13

Matter profile of the Earth ... as seen by a neutrino

Resonance energy (from $\hat{A} \to \cos 2\theta$): $E_{\text{res}} [\text{GeV}] \sim 13200 \cos 2\theta \frac{\Delta m^2 [\text{eV}^2]}{\rho [\text{g/cm}^3]}$

Mantle-core-mantle profile

(Parametric enhancement: Akhmedov, 1998; Akhmedov, Lipari, Smirnov, 1998; Petcov, 1998)

Probability for L=11810 km

Method 2: Disappearance probabilities

- > Works in vacuum, and even for $\theta_{13}=0$
- > Just flipping the sign of Δm^2 is not sufficient
- Example: Reactor experiment, L=53 km

Walter Winter | Neutrino 2014 | 04.06.2014 | Page 16

Method 2: Disappearance probabilities

> The disappearance Δm^2 depends on the channel. Consequence e.g. $|\delta m_{\text{eff}}^2|_e - |\delta m_{\text{eff}}^2|_\mu = \pm \delta m_{21}^2 (\cos 2\theta_{12} - \cos \delta \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$

de Gouvea, Jenkins, Kayser, hep-ph/0503079; Nunokawa, Parke, Zukanovich, hep-ph/0503283

Technologies to measure the mass ordering

The "classics": Long-baseline experiments

Walter Winter | Neutrino 2014 | 04.06.2014 | Page 19

See talks this afternoon ...

Emerging technologies: Atmospheric vs

- Example: PINGU ("Precision IceCube Next Generation Upgrade")
- > 40 additional strings, 60 optical modules each
- Lower threshold, few Mtons at a few GeV
- > ORCA, INO: similar methods

Talks by M. de Jong, D. Grant, D. Indumathi

Walter Winter | Neutrino 2014 | 04.06.2014 | Page 20

Emerging technologies 2: Reactor experiments

- > Jiangmen Underground **Neutrino Observatory** (JUNO) [formerly Daya Bay-II]
- > L=53 km

1.0

0.8

0.6

0.4

0.2

0.0

2.0

 $P_{\overline{e\,e}}$

Excellent energy resoluton $(3\% (E/MeV)^{0.5})$ requires O(100%) PMT coverage

> 20 19

2.5

3% (E/MeV)^{0.5}

18 17

3.0

E [MeV]

NO

ΙΟ

3.5

16

15

14

See talk by Liangian Wen

Time evolution, risks?

0

(version from PINGU LOI, arXiv:1401.2046; based on Blennow, Coloma, Huber, Schwetz, arXiv:1311.1822v1; LBNE dashed curve from arXiv:1311.1822v2)

Relative impact on χ^2 [%]

Bands:

- > Beam experiments: δ_{CP}
- > PINGU, INO: θ_{23}
- JUNO: Energy resolution (3%-3.5%) (E/MeV)^{0.5}

Caveats:

- LBNE sensitivity scales with (true) θ₂₃ as well (dashed curve) see e.g. Fig. 9 in arXiv:1305.5539
- Energy resolution, directional resolution etc major challenges for PINGU/INO as well
 WW, arXiv:1305.5539

Page 22

Benefits of having different techniques

 Complementarity different impact of δ_{CP} (true) WW, arXiv:1305.5539; see also (for INO): Ghosh, Thakore, Choubey, arXiv:1212.1305

- Synergy by combination of different parameter space topologies
 - Blennow, Schwetz, arXiv:1306.3988

Summary and conclusions

- > The mass ordering is one of the prime indicators of flavor models
- Meaningful statements on neutrino mass schemes and nature of neutrino mass require direct measurent of neutrino mass ordering, as well as 0vββ and cosmology/direct neutrino mass bounds
- > There are currently three approaches to the mass ordering measurement:

	Long baseline beam (e. g. LBNE)	Atmospheric (e. g. PINGU)	Reactor long baseline
Benefit	Robust, clean signal	Predictable timescale/cost	Independent technology
Risk (osc. params.)	δ _{CP} , θ ₂₃	θ_{23}	-
Challenges	Timescale	Energy res., directional res., particle ID	Energy resolution!!!

Having all three approaches will guarantee high-CL determination and independent confirmation

