Neutrino 2014 Poster Session-Boston, June 2-7, 2014

Physics Potential of the Jiangmen Underground Neutrino Observatory (JUNO)

1. Introduction

- > After the discovery of non-zero theta_13, the neutrino mass hierarchy (MH) and the lepton CP violation (CPV) are the central concerns in neutrino oscillation experiments.
- > The MH can be determined in the oscillations of accelerator neutrinos, reactor neutrinos and atmospheric neutrinos.
- > The Jiangmen Underground Neutrino Observatory (JUNO), which is located at Kaiping, Jiangmen in South China, is designed to determine the neutrino MH using reactor neutrino oscillations [PRD 78, 111103 (2008)].

We shall present some selected topics on the physics potential of JUNO,

5. Supernova Neutrinos

120		COR DO NO.			
	Channel	Type	Events for different $\langle E_{\nu} \rangle$ values		
	Channel	туре	$12 { m MeV}$	$14 { m MeV}$	$16 { m MeV}$
ć	$\overline{\nu}_e + p \to e^+ + n$	CC	4.3×10^3	$5.0 imes 10^3$	5.7×10
K	$\nu + p \rightarrow \nu + p$	NC	$6.0 imes 10^2$	1.2×10^3	2.0×10
Te a	$\nu + e \rightarrow \nu + e$	NC	$3.6 imes 10^2$	$3.6 imes 10^2$	3.6×10
	$\nu + {}^{12}\mathrm{C} \rightarrow \nu + {}^{12}\mathrm{C}^*$	NC	$1.7 imes 10^2$	$3.2 imes 10^2$	5.2×10
Ċ,	$\nu_e + {}^{12}\mathrm{C} \rightarrow e^- + {}^{12}\mathrm{N}$	$\mathbf{C}\mathbf{C}$	$4.7 imes 10^1$	$9.4 imes 10^1$	1.6×10^{-1}
	$\overline{\nu}_e + {}^{12}\mathrm{C} \rightarrow e^+ + {}^{12}\mathrm{B}$	$\mathbf{C}\mathbf{C}$	$6.0 imes 10^1$	$1.1 imes 10^2$	1.6×10

Numbers of neutrino events at JUNO for a SN at a distance of 10 kpc.

> For a galactic supernova (SN) at 10 kpc, JUNO will register about 5000 events from inverse beta decay (IBD), > 2000 events from all-flavor elastic neutrino-proton scattering if the energy threshold of 0.2 MeV is achieved.

>SN neutrino events with

(a) the MH; (b) precision measurement; (c) supernova neutrinos;

(d) diffuse supernova neutrinos; (e) Other opportunities.

2. Baseline and Location

- > The optimum baseline is required to be at the oscillation maximum Of Δm_{21}^2 .
- > Fine structure of Δm_{31}^2 oscillations is used to determine the MH.

6. Diffuse Supernova Neutrinos

> Supernova explosions occurred in both the past and present universe make a diffuse neutrino background, i.e., diffuse supernova neutrinos.

> Detecting or even setting limits on their flux can give us quite useful and unique implications for astrophysics, cosmology and particle physics.

> Expected event rate: 3-6 events per year. >Main background:

reactor antineutrino events, atmospheric neutrino CC and NC events, fast neutrons

- Pulse shape analysis
- Signal to background ratio better than 1.
- > JUNO: Chance for discovery (2-3 sigma for 10 years)

3. Mass Hierarchy

Nominal setups:

20 kt liquid scintillator (LS) detector 3%/sqrt(E) energy resolution 52-53 km baselines, 36 GW and 6 years

4. Precision Measurement

The MH (median) sensitivity with 6 years' data of JUNO:

[PRD 88, 013008 (2013)]:

JUNO 53 km

3-sigma for purely relative spectral measurement.

4-sigma with the external Δm^2 measurement

(if the accelerator neutrino experiment can measure Δm^2 to ~1% level) after taking into account:

> (a) the spread of reactor cores, (b) the reactor uncertainties, (c) the energy uncertainties (d) residual non-linearity (1%).

7. Other opportunities (ii) Proton decay

(i) Geoneutrinos KamLAND: 30 ±7 TNU [PRD 88 (2013) 033001] Borexino: 38.8±12.0 TNU [PLB 722 (2013) 295] JUNO (expected, preliminary): $37 \pm 10\%$ (stat) $\pm 10\%$ (syst) TNU

8. Conclusion

>JUNO is competitive and complementary in search for nucleon decays. In particular, in the SUSY favored decay channel:

 $P \to K^+ + \bar{\nu}$

Pulse shape for background reduction

> If no candidate found (assuming 0.5 bg/10 yr) $\tau > 1.9 \times 10^{34} \text{ yr} (90\% \text{ C.L.})$

(iii) Solar neutrinos

Radioactive and/or cosmogenic backgrounds are crucial for the detection of pp and CNO solar neutrinos.

(iv) Atmospheric neutrinos

>LS detector has some advantages for low energy atmospheric neutrinos.

>JUNO is a multipurpose neutrino Observatory with the physics potential ranging from neutrino physics to neutrino astronomy and neutrino geoscience.

>With the precision spectral measurement, JUNO can resolve the **neutrino mass**

>JUNO is the first experiment to simultaneously observe neutrino oscillations from both atmospheric and solar neutrino mass splitings.

>JUNO is the first experiment to observe more than two oscillation cycles of the atmospheric mass spliting.

	Current	JUNO
Δm_{12}^2	~3%	~0.5%
$ \Delta m^2_{23} $	~4%	~0.6%
$\sin^2\theta_{12}$	~7%	~0.7%
$sin^2\theta_{23}$	~15%	N/A
$\sin^2\theta_{13}$	~10% ~4%	~ 15%

>JUNO will be unprecedented precision measurements of three of oscillation parameters to better than 1%.

>JUNO is a powerful tool to test the standard three-neutrino model. Precision spectral measurement is crucial to probe additional neutrino species and interactions.

hierarchy and measure three of oscillation parameters to better than 1%.

> JUNO is competitive in observing the supernova neutrinos with the advantages of high statistics, flavor identification and good energy resolution.

>JUNO is also competive in the aspects of diffuse supernova neutrinos, geoneutrinos and neucleon decays.

> A yellow book to explore the full physics potential is being written, and will release to the community by the end of this year.

>I am grateful to Dr. Shun Zhou (supernova neutrinos), Dr. Michael Wurm (diffuse supernova neutrinos), Dr. Ran Han (geoneutrinos), and Dr. Zhe Wang for their useful inputs; and to the whole proto-Collabaration for giving me the opportunity to present this poster at Neutrino 2014.

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, P. R. China Email: liyufeng@ihep.ac.cn

Yu-Feng Li, **On behalf of the JUNO proto-Collaboration**