

BICOCCA

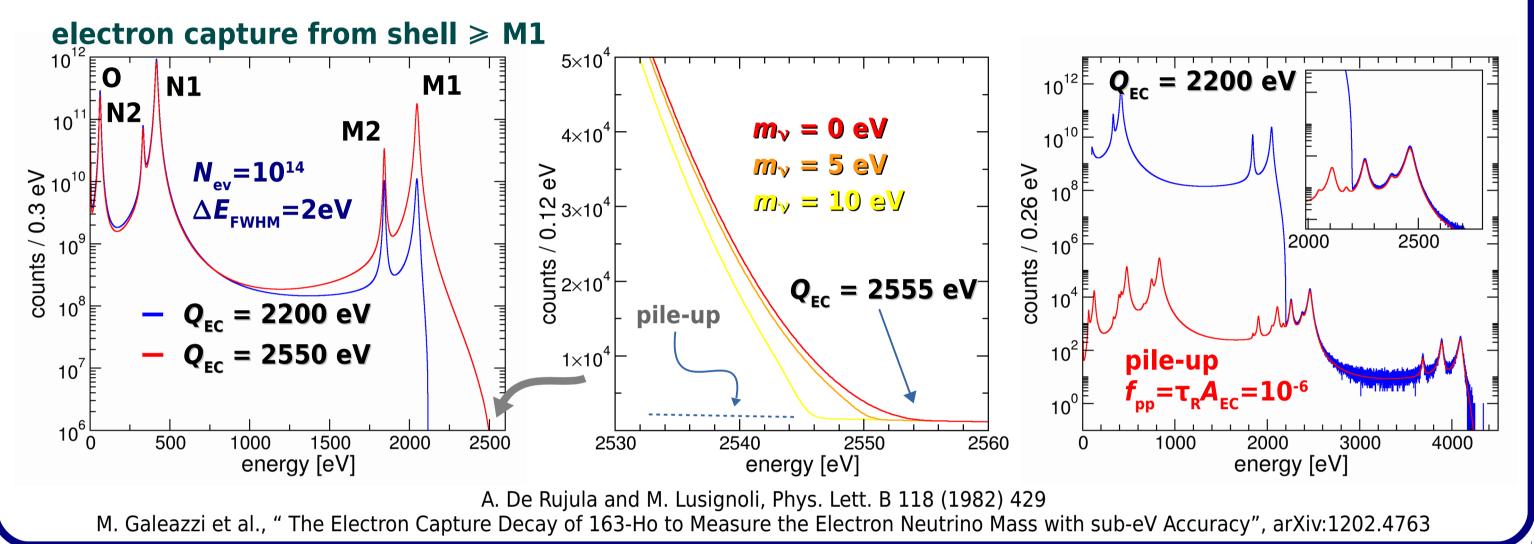
the HOLMES experiment

ERC - Advanced Grant 2013 GA n. 340321 PI: **S. Ragazzi** HI: **INFN**

A. Nucciotti on behalf of the HOLMES collaboration

Dipartimento di Fisica "G. Occhialini", Università di Milano-Bicocca, Milano, Italia

The Electron Capture Decay of ¹⁶³Ho to Measure


the Electron Neutrino Mass with sub-eV sensitivity

INFN - Sezione di Milano Bicocca, Milano, Italia

The **European Research Council** has recently funded **HOLMES**, a new experiment to directly measure the neutrino mass. **HOLMES** will perform a calorimetric measurement of the energy released in the decay of ¹⁶³Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with beta spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress allowed to design a sensitive experiment. **HOLMES** will deploy a large array of low temperature microcalorimeters with implanted ¹⁶³Ho nuclei. The resulting mass sensitivity will be as low as 0.4eV. **HOLMES** will be an important step forward in the direct neutrino mass measurement with a calorimetric approach as an alternative to spectrometry. It will also establish the potential of this approach to extend the sensitivity down to 0.1eV. We outline here the project with its technical challenges and perspectives.

¹⁶³Ho + e⁻ \rightarrow ¹⁶³Dy* + ν_{e} $\frac{d\lambda_{EC}}{dE_{c}} = \frac{G_{\beta}^{2}}{4\pi^{2}}(Q - E_{c})\sqrt{(Q - E_{c})^{2} - m_{\nu}^{2}} \times \sum_{i} n_{i}C_{i}\beta_{i}^{2}B_{i}\frac{\Gamma_{i}}{2\pi}\frac{1}{(E_{c} - E_{i})^{2} + \Gamma_{i}^{2}/4}$

- calorimetric measurement of Dy atomic de-excitations (mostly non-radiative) • rate at end-point and v mass sensitivity depend on Q_{FC}
- ▶ Measured: $Q_{EC} = 2200 \div 2800 \text{ eV}$. Recommended: $Q_{EC} = 2555 \text{ eV}$
- $\tau_{\frac{1}{12}} \approx 4570$ years: 2×10^{11} ¹⁶³Ho nuclei $\rightarrow 1$ Bq

6.7 s 2.5

Dy 160 2.329

in π < 0.0003

Dy 161 18.889

σ 600 σ_{n, α} <1E-6

¹⁶²Er (n,γ) ¹⁶³Er σ_{thermal} ≈ 20b ¹⁶³Er → ¹⁶³Ho + ν_e $τ_{\frac{1}{12}}^{EC} \approx 75min$ ¹⁶³Ho production at nuclear reactor • high yield (not all cross sections are measured)

Tm 163 Tm 164 1.81 h 5.1 m 2.0 m		Tm 165 30.06 h	Tm 166 7.70 h	Tm 167 9.25 d	Tm 168 93.1 d				
ε β ⁺ γ 104; 69; 241; 1434; 1397	hy ε y 208; 315 Er 163 75 m		ε β ⁺ γ 243; 47; 297; 807	ε β ⁺ 1.9 γ 779; 2052; 184; 1274	ε γ 532 m	ε; β ⁺ β ⁻ γ 198; 816; 447			
Er 162 0.139			Er 164 1.601	Er 165 10.3 h	Er 166 33.503	Er 167 2.3 s 22.869			
σ19 σ _{n. α} <0.011	β ⁺ γ (1114. 9)	σ13 σ _{n, α} <0.0012	e no y	σ3+14 σ _{n. α} <7E-5	lγ 208 e	σ 650 σεω 3Ε-6		

37 m

Dy 163 24.896

σ120 σ_{n. α} <2E-5

Tb 162

Dy 162 25.475

Tb 161

r 170

3.1 + 58 n. α < 2E-5

Dy 164 28.260

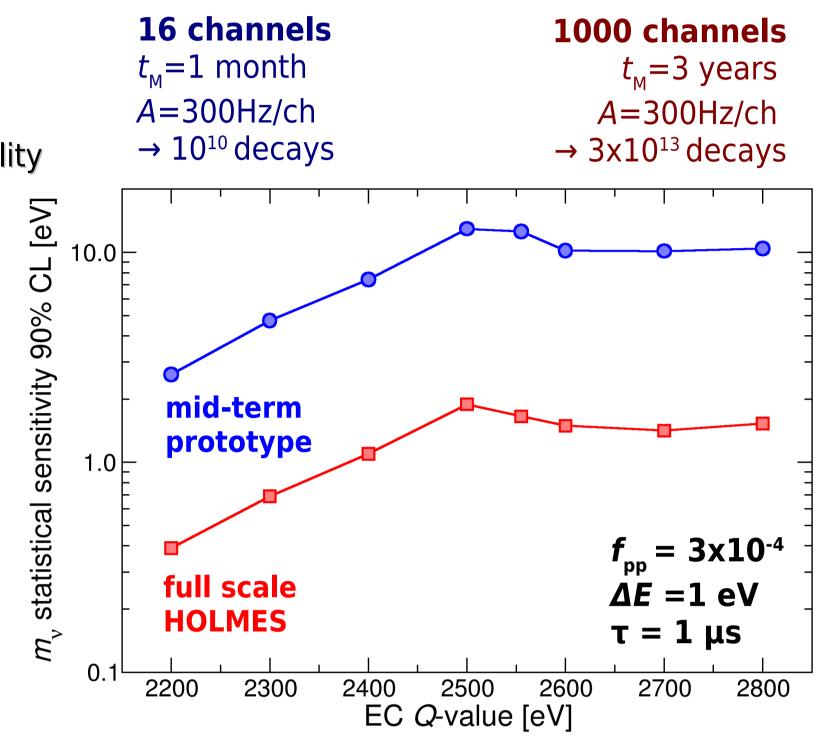
σ 1610 + 1040

Tb 163

Dy 165

1.3 m | 2.35 h

Tb 164


γ 515... σ 2000

HOLMES goals

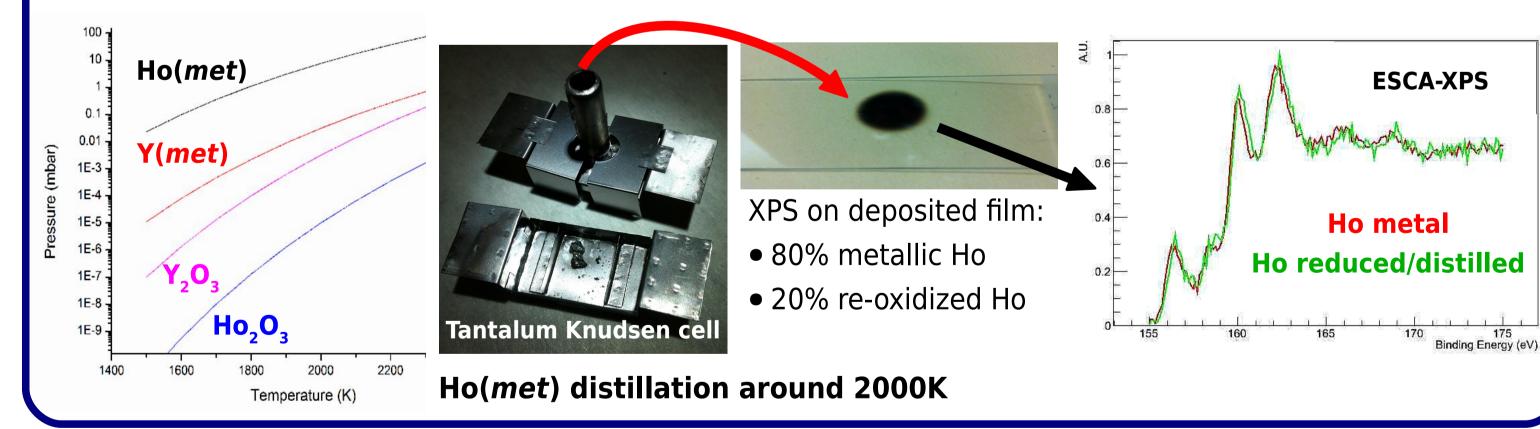
- neutrino mass measurement with a m_v statistical sensitivity as low as 0.4 eV
- demonstrate technique potential and scalability

HOLMES baseline

- Transition Edge Sensors (TES)
- with ¹⁶³Ho implanted Au absorbers
- ► 6.5×10^{13} nuclei per detector $\rightarrow A_{EC} = 300$ Bq
- ► ΔE≈1eV and τ_R≈1µs
- 1000 channel array
- ► $6.5 \times 10^{16 \ 163}$ Ho nuclei → $\approx 18 \mu g$
- ► 3×10¹³ events in 3 years
- → Project Start: February 1st, 2014

NIST

A. Nucciotti, Statistical sensitivity of 163-Ho electron capture neutrino mass, submitted to EPJC. arXiv:1405.5060

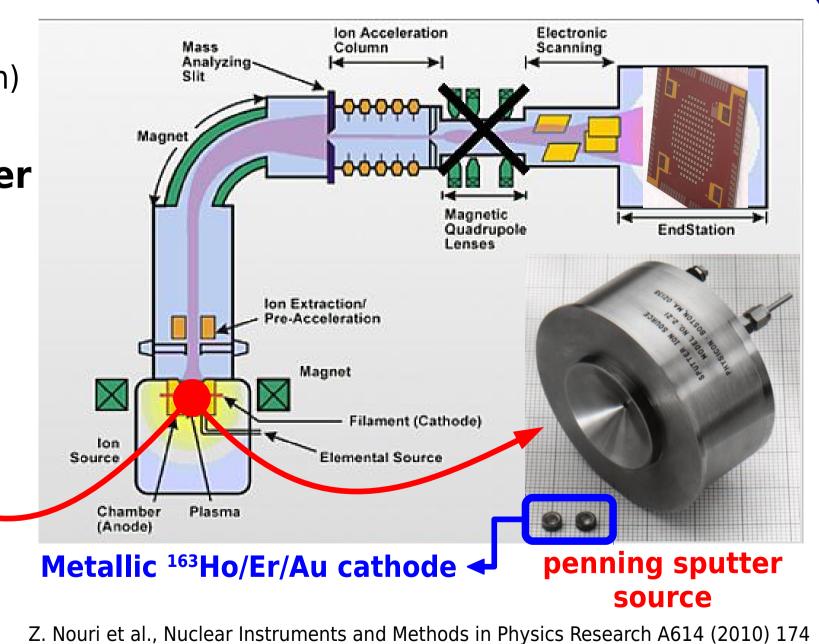

Transition Edge Sensors (TES): MoCu bilayers $\rightarrow T_c \approx 100 \text{ mK}$

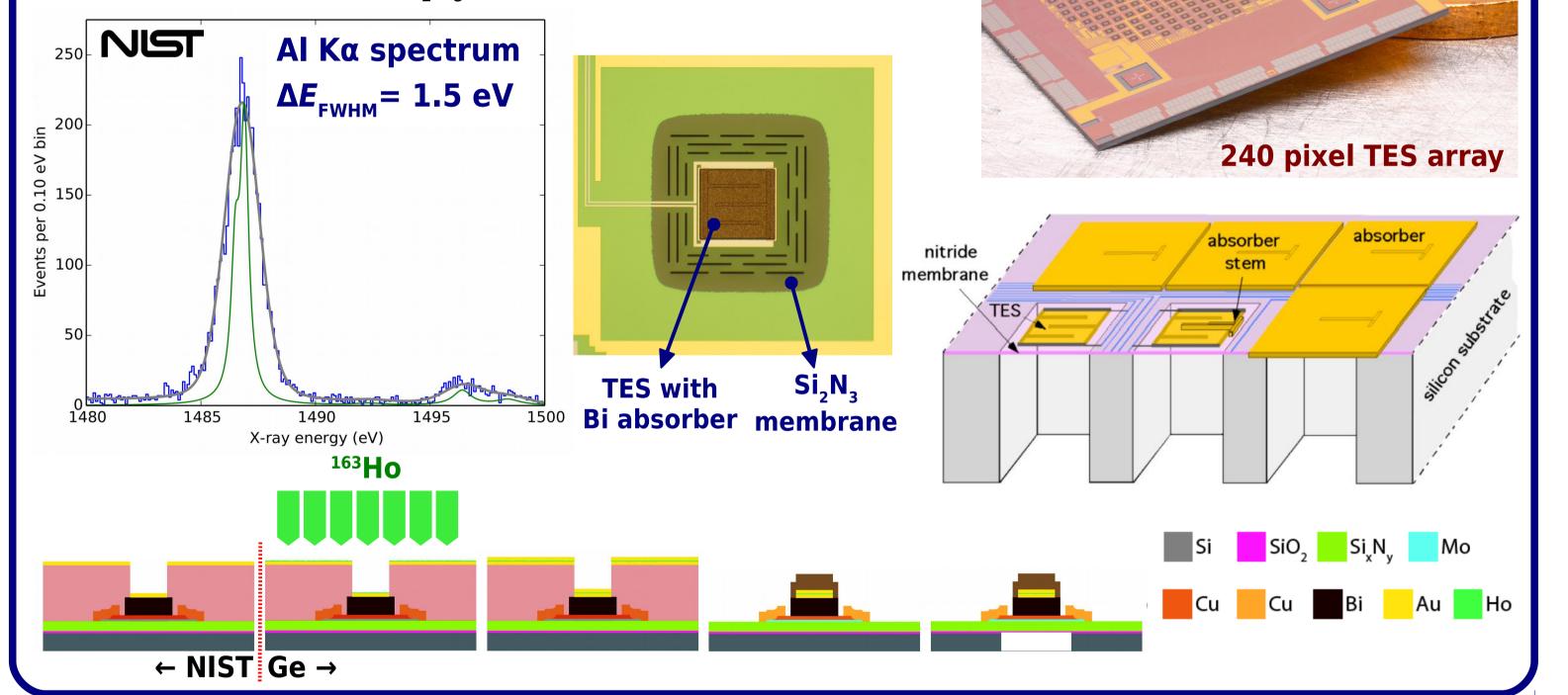
- microcalorimeters with electro-thermal feedback
- 3 μ m thick Bi absorber with ¹⁶³Ho/Au source for full absorbtion
- source: thin electrodeposited Au encapsulating implanted ¹⁶³Ho
- TES fabricated by subcontractor (NIST, Boulder, CO, USA)
- ¹⁶³Ho implantation and Si_2N_3 membrane release at Genova

- ► ≈3×10^{12 163}Ho nuclei/mg(¹⁶²Er)/h for a thermal neutron flux of 10¹³ n/cm²/s
- ¹⁶³Ho(n,γ)¹⁶⁴Ho (burn-up)?
- 165 Ho(n, γ) 166m Ho (β , $\tau {}^{1}/_{2}$ =1200y)
- from Ho contaminations or $^{164}\text{Er}(n,\gamma)$
- requires 162 Er enrichment and oxide chemical form (Er ${}_{2}O_{3}$)

 Er_2O_3/HO_2O_3 thermoreduction \rightarrow metallic Ho target for implantation

• $Ho_2O_3 + 2Y(met) \rightarrow 2Ho(met) + Y_2O_3$ at 2000°C

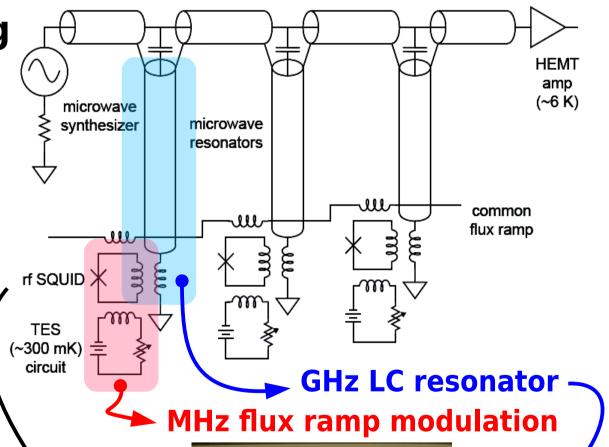



¹⁶³Ho separation from Dy, Er, ...

radiochemistry (before and/or after irradiation)
magnetic mass separation
163Ho embedding in detector absorbor

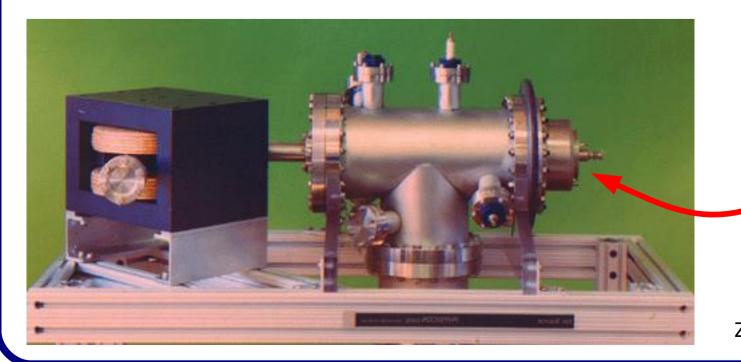
¹⁶³Ho embedding in detector absorber

- implantation +magnetic separation
- Au film deposition for full containment

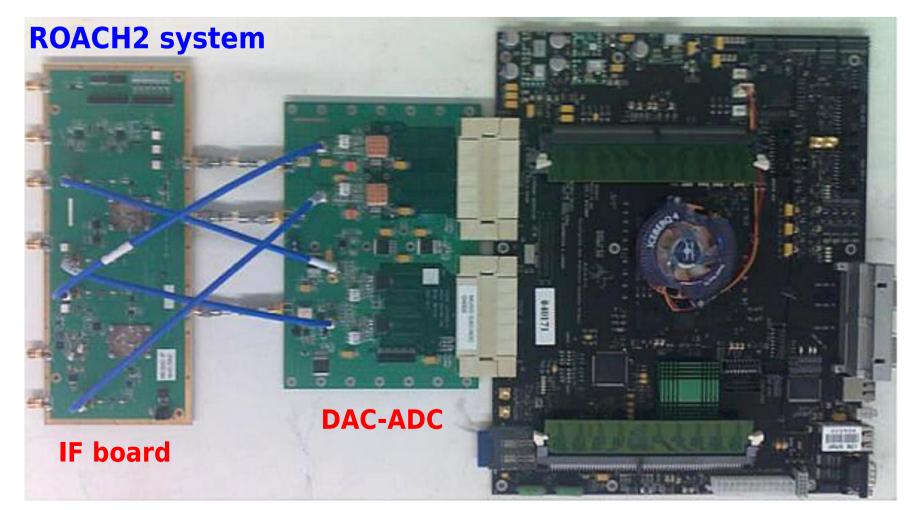


- **rf-SQUID read-out with microwave multiplexing**DC biased TES
- microwave rf-SQUID read out with flux ramp modulation

ROACH2-based Software Defined Radio


- Xilinx FPGA based digital data processing
- frequency comb generation (up to ≈ 60 in 0 550 MHz)
- GHz band up/down conversion (5 5.5 GHz)
- I-Q signals (homodyne detection) de-multiplexing
- signal channelizing and rf-SQUID signal de-modulation

IF chip


Out ____

Multiplexer chip

Project year	2014		2015		2016		2017		2018	
Tasks		12	18	24	30	36	42	48	54	60
Isotope production							1			
TES pixel optimazion / absorber implantation										
Array design and production										
Multiplexed read-out							I			
Room Temperature electronics and data processing								l		
Single pixel high resolution ¹⁶³ Ho spectrum measurement										
4×4 array measurement										
HOLMES measurement										

• real time signal processing \rightarrow 140TB in 3 years

O. Noroozian et al., "High-resolution gamma-ray spectroscopy with a microwave-multiplexed transition-edge sensor array". arXiv:1310.7287

HOLMES web site http://artico.mib.infn.it
pdf file of this poster
seminar on HOLMES, May 14th, 2014, LNGS, Italy

NIST