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The solar composition problem

The Standard Solar Model (SSM) treats the absolute and relative elemental abundances as an input.
The old GS98 admixture yields concordance between models and helioseismic and solar neutrino
data. A systematic overhaul in solar model atmospheres, see e.g. AGSS09met admixture, has led to a
downward revision in photospheric heavy element abundances by up to 30-40% for important
species such as oxygen.
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In synthesis, inferences from modern 3D hydrodynamic models of the solar atmosphere lead to
predictions in strong disagreement with observational constraints.

A quantitative analysis

To combine observational infos, we need an estimator that is non-biased and that can be used as a
figure-of-merit for solar models with different composition. We define:
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We include 10 syst. error sources: {I} = {opa; age; diffu; lum; Si1, S33, S34, S17, Se7, S1.14}

We consider 34 obs. quantities:

(6Q} = {505, 6% V5, SRy dc1, dcs, ..., beso )

’Be and 8B neutrino Surface helium and Sound speed data points
fluxes convective radius (Basu et al, 2009)

We take the surface abundances (wrt hydrogen) as free parameters: 2 = Zipn/ Xy

We infer the best-fit composition by minimizing the x?: X° = Xops + xgyst = Z X 22 + Z é?
Q I

Note: This approach is completely equivalent to the standard

covariance matrix approach. However: - 0Qobs — Y1 E1Cqu

* [t is more easily implemented numerically Xq = Uo |

* [tallows to trace the individual contributions to the x?

* The distribution of pulls can be used to highlight tensions in SSM.
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A two parameter analysis - continued

* The SSM implementing AGSS09met is excluded at an high confidence level (x?/d.o.f. = 176.7 /32).

* There is a substantial agreement between the infos provided by the various observational
constraints. The quality of the fit is quite good (x?/ d.o.f. = 39.6/32).

* The best-fit abundances are consistent at 1o with GS98. The errors on the inferred abundances
are smaller than what is obtained by obs. determinations.

* The CNO neutrino fluxes are expected to be ~50% larger than predicted by AGSS09met (this
result depend on the assumed heavly element grouping).

Prior: Neon-to-oxygen ratio forced at the AGSSO9met value with 30% accuracy
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GS98 still favored by observational data but;
- degeneracies appear among the various 0z ;
- obs.data do not effectively constrain the Ne/O ratio

The role of metals in the Sun

A change of the solar composition produces a modification of the opacity profile of the Sun. The
source term 8k (r) that drives the modification of the solar properties is given by the sum of two
contributions: dk(r) = 6x,(r) + 6x,(r).

The effective opacity change for SSMs

- The intrinsic opacity change 6x,(r) represents the that provide a good fit to obs. data

fractional variation of the opacity along the SSM D as

profile. It is given, in our approach, by: Black: 02CNO = 02Ne = 0.45; §2mer = 0.19
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/ Are there other effects that can provide the required opacity change? \

Wrong opacity calculations? - the required variations seems large wrt uncertainties

Different distribution of metals in the Sun? - According to the standard assumptions, metals
are nearly omogeneous in the sun (elemental diffusion is responsible for a slight increase at the
solar center). Is this an oversimplified picture of chemical evolution?

\Is this discrepancy pointing at new physics? /

The importance of CNO neutrinos

Even a low accuracy CNO neutrino flux measurement, providing a direct determination of the
metallicity of the solar core, permits to remove the degeneracy between opacity and
composition effects:
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At present, we only have a loose upper limit on CNO neutrino fluxes:
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Very difficult, in practice. Not impossible, in principle .....
See eg.F.L. Villante et al. — Phys.Lett. B701 (2011) 336

Will it be possible to detect CNO neutrino?

If the detected fluxes were consistent with those predicted by using AGSS09met admixture:
—> Opacity calculations are wrong by a factor much larger than the presently estimated uncertainties.

If they were consistent with the expectations from our analysis (i.e. ~50% larger than predictions):
- the AGSS09met surface abundances are wrong and/or the chemical evolution paradigm of SSM is

not correct.

Both these results would have enormous implications for stellar evolution.
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