Cosmic Neutrino Detection from the International Space Sta

Luis A. Anchordoqui¹, Kristina Islo², Angela Olinto³, Tom Paul^{1,2,4} and Brian $Vlcek^{2}$

Department of Physics and Astronomy, Lehman College, City University of New York, Bronx NY 10468, USA

Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA

Department of Astronomy and Astrophysics, Enrico Fermi Institute, Kavli Institute of Cosmological Physics, University of Chicago, Chicago, IL, 60637, USA Department of Physics, Northeastern University, Boston, MA 02115, USA

Space Based Observatories and Upgoing Extensive Air Showers

- UHECR detectors will soon be operational onboard the International Space Station (ISS). Space-based observatories (aside from detecting EAS) will be able detect up going showers generated by the decay of τ leptons produced in CC interactions of ν_{τ} with the Earth's crust.
- Each charged particle of the shower has ability to emit Cherenkov light if $\beta^{-2} < \epsilon(\omega, h)$ is satisfied, where β is the velocity of the particle in natural units, ω is the wavelength of Cherenkov light, h is the altitude of the light emitting particle, and ϵ is the dielectric constant of the atmosphere.
- How many of these τ initialed events would be potentially be recordable per year?

Simple Calculation of EAS from Upgoing τ

• Assume uniform density spherical Earth. Generate τ exiting surface with $(E_{\tau}, E_{\tau} + dE_{\tau})$ at coordinates $(\theta_X, \theta_X + d\theta_X)$ and $(\phi_X, \phi_X + d\phi_X)$, see Fig. 1 τ exits Earth in some direction specified by local spherical coordinates $(\alpha_{ZE}, \beta_{EN})$, see Fig 1.

Event Rate for Detectablity of Upgoing Showers

Fig. 1: τ Exits Earth Along Red Line Path

- EAS development modeled using simplistic Heitler model [1], which may overestimate signal.
- Figure 2 shows maximum number of charged particles (per shower) that can emit Cherenkov light in atmosphere.

Fig. 2, Number of charged particles that emit Cherenkov light vs. τ energy

Cherenkov Light at Aperture Calculation

Event Rate Calculation

- For triggering shower we set threshold $N_{\gamma} = 400$ photons per GTU per pixel across entire E_{ν} . Trigger requires coincident detection at two telescopes separated by ISS length.
- Assume isotropic cosmic neutrino flux

$$\frac{dN_{\nu}}{dE_{\nu}d\Omega_{\text{source}}dAdt} = \Phi E_{\nu}^{-p}$$

(1)

using unbroken power-law p = 2.3, $\phi = 2.0 \times 10^{-6}$ GeV cm⁻² s⁻¹ sr⁻¹ [2] and LW [3] flux p = 2.15 with $\Phi = 10^{-7} \text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$ steepening to p = -3.75 at 3 PeV [4].

- For showers above threshold, we backtrace through Earth along direction of initiating τ to find projection of exiting area $R_E^2 \sin(\theta_X) d\theta_X d\phi_X$ on incident side of Earth dA_E .
- Source solid angle that would create the τ is $d\Omega_{\alpha\beta} = \sin(\alpha)d\alpha d\beta$.
- Using the number of incident neutrinos on dA_E from $d\Omega_{\alpha\beta}$ we propagate them through the Earth. This is done via the approximation that the Earth is essentially a gas for neutrinos given their small interaction cross section, $\sigma = (6.04 \text{ pb})(E_{\nu}/\text{GeV})^{0.385}$ [5]. That is the number of neutrinos per time with $(E_{\nu}, E_{\nu} + dE_{\nu})$ that convert to τ between (l, l + dl) is

$$dN_{\nu \to \tau} = P(E_{\nu}, l) \Phi E_{\nu}^{-p} dE_{\nu} dl d\Omega_{\alpha\beta} dA_E , \quad P(E_{\nu}, l) = (n_E \sigma) e^{-ln_E \sigma} , \quad (2)$$

with $n_E \approx 4.43 \times 10^{37}$ km⁻³ the average number density of the Earth.

- We take the energy of the τ to be 80% of the ν_{τ} energy across the entire energy range. We model τ energy loses by $dE_{\tau}/dX = -a - bE_{\tau}$, with $a = 0.2 \text{ eV } \text{km}^2 \text{ kg}^{-1}$ and $b = 8.0 \times 10^{-14} \text{ km}^2 \text{ kg}^{-1}$ [6].
- We numerically integrate over all energies of exiting tau and over all locations on Earth within the horizon distance to the ISS. The differential event rate per year as a function of the exit location θ_X is given in Fig. 5
- Generate 25 different initial tau directions at exit point on Earth surface (θ_X, ϕ_X) to sample space $(\alpha_0, \alpha_0 \pm 1.45^\circ)$ and $(\beta_0, \beta_0 \pm 1.45^\circ)$, with (α_0, β_0) local coordinates of ISS direction and 1.4° is maximum Cherenkov opening angle.
- After Δt , light reaches ISS altitude ($h \approx 400 \text{ km}$). Fit Cherenkov rings (radius = $c\Delta t \sin \theta_c$) to ellipse. Consider reduction of photon density as Chernekov ring has expanded $\rho_{\gamma} = \rho_{\gamma}^0 / 2\pi c \Delta t \sin(\theta_c)$, where ρ_{γ}^{0} is the initial photon density of the ring, with an opening angle θ_{c} .
- Photon bath has a scale of 10 100 km depending on Earth exit location. Figure 3 displays representative photon distribution at ISS altitude. Detector aperture is taken to be circle of 1 m radius.

Fig. 3, Scales of photon pools of single shower events for left: $\theta_X = 1^{\circ}$, right: $\theta_X = 10^{\circ}$

Fig. 4, Average number of photons across the aperture vs. θ_X , for $E_{\tau} = 10^{15}$ eV

• Most of the detectable neutrinos are Earth skimmers/at the edge of the FOV see Fig. 6

Fig. 6, Region of largest potentially detectable flux comes from Earth skimming events

Astropart. Phys. 44, 76 (2013) [arXiv:1305.2478 [astro-ph.HE]]. Work supported by NSF and NASA.