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Space Based Observatories and Upgoing Extensive Air Showers

• UHECR detectors will soon be operational onboard the International Space Station (ISS).
Space-based observatories (aside from detecting EAS) will be able detect up going showers
generated by the decay of ⌧ leptons produced in CC interactions of ⌫⌧ with the Earth’s crust.

• Each charged particle of the shower has ability to emit Cherenkov light if ��2 < ✏(!, h) is satisfied,
where � is the velocity of the particle in natural units, ! is the wavelength of Cherenkov light,
h is the altitude of the light emitting particle, and ✏ is the dielectric constant of the atmosphere.

• How many of these ⌧ initialed events would be potentially be recordable per year?

Event Rate for Detectablity of Upgoing Showers

Differential ⌧ Event Rate for left: p = 2.3 and right: p = 2.15
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p = 2.3 ! 9.28 Events/year : p = 2.15 ! 26 Events/year

Simple Calculation of EAS from Upgoing ⌧

• Assume uniform density spherical Earth. Generate ⌧ exiting surface with (E⌧ , E⌧ + dE⌧ )

at coordinates (✓X, ✓X + d✓X ) and (�X,�X + d�X ), see Fig. 1
⌧ exits Earth in some direction specified by local spherical coordinates (↵ZE, �EN ), see Fig 1.

Fig. 1: ⌧ Exits Earth Along Red Line Path
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• EAS development modeled using simplistic Heitler model [1], which may overestimate signal.

• Figure 2 shows maximum number of charged particles (per shower) that can emit Cherenkov light
in atmosphere.

Fig. 2, Number of charged particles that emit Cherenkov light vs. ⌧ energy
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Cherenkov Light at Aperture Calculation

• Generate 25 different initial tau directions at exit point on Earth surface (✓X,�X )

to sample space (↵
0

,↵
0

± 1.45�) and (�
0

, �
0

± 1.45�),
with (↵

0

, �
0

) local coordinates of ISS direction and1.4� is maximum Cherenkov opening angle.

• After �t, light reaches ISS altitude (h ⇡ 400 km).
Fit Cherenkov rings (radius = c�t sin ✓c) to ellipse.
Consider reduction of photon density as Chernekov ring has expanded ⇢� = ⇢0�/2⇡c�t sin(✓c),

where ⇢0� is the initial photon density of the ring, with an opening angle ✓c.

• Photon bath has a scale of 10 � 100 km depending on Earth exit location.
Figure 3 displays representative photon distribution at ISS altitude.
Detector aperture is taken to be circle of 1 m radius.

Fig. 3, Scales of photon pools of single shower events for left: ✓X = 1
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, right: ✓X = 10
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• Figure 4 shows representative count of photons for aperture at E⌧ = 10

15 eV

Fig. 4, Average number of photons across the aperture vs. ✓X , for E⌧ = 10

15
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Event Rate Calculation
• For triggering shower we set threshold N� = 400 photons per GTU per pixel across entire E⌫ .

Trigger requires coincident detection at two telescopes separated by ISS length.

• Assume isotropic cosmic neutrino flux
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using unbroken power-law p = 2.3 , � = 2.0 ⇥ 10
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�1 steepening to p = �3.75 at 3 PeV [4].

• For showers above threshold, we backtrace through Earth along direction of initiating ⌧

to find projection of exiting area R2

E
sin(✓X )d✓Xd�X on incident side of Earth dAE .

• Source solid angle that would create the ⌧ is d⌦↵� = sin(↵)d↵d�.

• Using the number of incident neutrinos on dAE from d⌦↵� we propagate them through the Earth.
This is done via the approximation that the Earth is essentially a gas for neutrinos given their small
interaction cross section, � = (6.04 pb)(E⌫/GeV)

0.385 [5]. That is the number of neutrinos per
time with (E⌫ , E⌫ + dE⌫ ) that convert to ⌧ between (l, l + dl) is

dN⌫!⌧ = P (E⌫ , l)�E
�p
⌫ dE⌫dld⌦↵�dAE , P (E⌫ , l) = (nE�)e�lnE� , (2)

with nE ⇡ 4.43 ⇥ 10

37

km

�3 the average number density of the Earth.

• We take the energy of the ⌧ to be 80% of the ⌫⌧ energy across the entire energy range.
We model ⌧ energy loses by dE⌧/dX = �a � bE⌧ ,
with a = 0.2 eV km

2

kg

�1 and b = 8.0 ⇥ 10

�14

km

2

kg

�1 [6].

• We numerically integrate over all energies of exiting tau
and over all locations on Earth within the horizon distance to the ISS.
The differential event rate per year as a function of the exit location ✓X is given in Fig. 5

Fig. 5, dN⌧/dE⌫dt rate vs. ✓X for E⌧ = 10
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• Most of the detectable neutrinos are Earth skimmers/at the edge of the FOV see Fig. 6

Fig. 6, Region of largest potentially detectable flux comes from Earth skimming events

• Taking into account ⇠ 10% duty cycle we find for :

p = 2.3 ! 9.28 events/yr and p = 2.15 ! 26.3 events/yr (3)
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