Everything Under the Sun

Gabriel D. Orebi Gann Neutrino 2014, Boston June 3rd, 2014

> U. C. Berkeley & LBNL

Modern Understanding

pp Chain

CNO Cycle

(contributes $\sim 1\%$ of solar energy)

The Astrophysical Journal **687** (2008) 678

Modern Understanding

pp Chain

CNO Cycle

(contributes $\sim 1\%$ of solar energy)

The Astrophysical Journal **687** (2008) 678

Solar Neutrino Energy Spectra

Solving the Solar Neutrino Problem

Inclusive appearance at the Sudbury Neutrino Observatory

ES:
$$\nu_x + e^- \rightarrow e^- + \nu_x$$

CC: $\nu_e + {}^2H \rightarrow e^- + 2p$
NC: $\nu_x + {}^2H \rightarrow n + p +$

PRL 87 (2001) 071301, PRL 89 (2002) 011301

Solving the Solar Neutrino Problem

Inclusive appearance at the Sudbury Neutrino Observatory

ES:
$$\nu_x + e^- \rightarrow e^- + \nu_x$$

CC: $\nu_e + {}^2H \rightarrow e^- + 2p$
NC: $\nu_x + {}^2H \rightarrow n + p + p$

Oscillations at KamLAND

Disappearance at >99.99% Clear oscillation pattern

PRL 87 (2001) 071301, PRL 89 (2002) 011301

Solar Neutrinos

"For 35 years people said to me: `John, we just don't understand the Sun well enough to be making claims about the fundamental nature of neutrinos, so we shouldn't waste time with all these solar neutrino experiments.'

Then the SNO results came out.

And the next day people said to me, `Well, John, we obviously understand the Sun perfectly well! No need for any more of these solar neutrino experiments.'"

--- John Bahcall, 2003

Physics Beyond the SNP

(1) Searching for new physics: V_e survival probability shape

(1) Vacuum-Matter Transition

(1) Vacuum-Matter Transition

In these regimes, P_{ee} depends only on θ_{12} , Not the mass splitting or neutrino-matter interaction

(1) Vacuum-Matter Transition

In these regimes, P_{ee} depends only on θ_{12} , Not the mass splitting or neutrino-matter interaction

Probing the Unknown

Non-standard physics effects can alter the shape / position of the "MSW rise"

Non-standard interactions

(flavour changing NC) Sterile Neutrinos Mass varying 80. L LMA-O pep .MA-Ipep LMA-0 B LMA-I ^aB neutrinos (MaVaNs) 0.6 $\sin^2\alpha = 1 \times 10^{-1}$ 0,4 $\sin^2\alpha = 2 \times 10^{-4}$ 0.5 0,2 - $\sin^2\alpha = 5 \times 10^4$ **ٿ** 0,4 survival probabiliy $\Delta m_{0,21}^2 = 0.000175 \text{ eV}^2$ 0.9 $\tan^2 \vartheta_{12} = 0.5$ 0.8 0.3 ⁷Be B SND 0.7 pρ pep $R_{A}=0.2$ 0.6 0.2 α 's=0 0.5 10-1 10 0,4 0.4 E,/MeV α's≠0 ⊢* 0.3 0.2 $R_{\Lambda} = 0.25$ 0.2 Friedland, Lunardini, Peña-Garay, 0.1 12 neutrino energy (MeV) 0 10⁻¹ PLB 594, (2004) 1 10 E_{ν} (MeV) Holanda & Smirnov PRD 83 (2011) 113011

M.C. Gonzalez-Garcia, M. Maltoni Phys Rept 460:1-129 (2008)

Precision Era Low Energy Threshold Analysis

Precision Era Low Energy Threshold Analysis

Survival Probability

Posters: Dr Nakano, #83

Survival Probability

Apparent turn-up is a feature of the quadratic parameterisation

Posters: Dr Nakano, #83

Survival Probability

Non-Standard Model Testing

Light sterile neutrino Non-standard MSW Dynamics

PRD 83:113011 (2011)

PRD 83:101701 (2011)

Non-Standard Models, Solar Neutrinos and Large θ₁₃ PRD 88: 053010 (2013)

- Non-standard forward scattering
- Mass-varying neutrinos
- Long-range leptonic forces
- Non-standard solar model

Non-Standard Model Testing

Light sterile neutrino Non-standard MSW Dynamics

PRD 83:113011 (2011)

PRD 83:101701 (2011)

Non-Standard Models, Solar Neutrinos and Large θ₁₃ PRD 88: 053010 (2013)

- Non-standard forward scattering
- Mass-varying neutrinos
- Long-range leptonic forces
- Non-standard solar model

Non-Standard Model Testing

Light sterile neutrino Non-standard MSW Dynamics

PRD 83:113011 (2011)

PRD 83:101701 (2011)

Non-Standard Models, Solar Neutrinos and Large θ_{13} PRD 88:053010 (2013)

- Non-standard forward scattering
- Mass-varying neutrinos
- Long-range leptonic forces
- Non-standard solar model

No significant effects (< 2σ)

Results limited by experimental precision

Probing the Transition Region: why we need ⁸B

Probing the Transition Region: why we need ⁸B

Physics Beyond the SNP

(1) Searching for new physics:
 V_e survival probability shape
 (2) Understanding stellar formation:

The metallicity of the Sun's core

(2) Understanding the Sun

SSM takes initial metallicity as input Predicts speed of sound through Sun's radial profile Boundary conditions: today's mass, radius, luminosity Beautiful agreement between SSM and helioseismology

> Posters: Dr Villante, #81

Figures from Annual Reviews of Astronomy and Astrophysics, 2009, 47, 481

(2) Understanding the Sun

SSM takes initial metallicity as input Predicts speed of sound through Sun's radial profile Boundary conditions: today's mass, radius, luminosity Beautiful agreement between SSM and helioseismology

More sophisticated analyses of photospheric absorption lines

- \Rightarrow better agreement with data
- \Rightarrow lower abundance of metals (> H, He)

Posters: Dr Villante, #81

Figures from Annual Reviews of Astronomy and Astrophysics, 2009, 47, 481

(2) Understanding the Sun

SSM takes initial metallicity as input Predicts speed of sound through Sun's radial profile Boundary conditions: today's mass, radius, luminosity Beautiful agreement between SSM and helioseismology

More sophisticated analyses of photospheric absorption lines

- \Rightarrow better agreement with data
- \Rightarrow lower abundance of metals (> H, He)

Posters: Dr Villante, #81

Figures from Annual Reviews of Astronomy and Astrophysics, 2009, 47, 481

The Astrophysical Journal 687 (2008) 678

 Measure of solar metalicity Flux predictions differ by >30% Precision ⁸B flux measurement constrains predictions

- Measure of solar metalicity Flux predictions differ by >30% Precision ⁸B flux measurement constrains predictions
- Test understanding of heavier main-sequence stars

The Astrophysical Journal 687 (2008) 678

- Measure of solar metalicity Flux predictions differ by >30% Precision ⁸B flux measurement constrains predictions
- Test understanding of heavier main-sequence stars

- Test postulate of homogeneous zero-age sun
- Constrain metal accretion during solar formation (did gas giants "sweep out" metals from convective zone?)
- Test extent of CN-cycle equilibrium

The Astrophysical Journal **687** (2008) 678

Physics Beyond the SNP

 (1) Searching for new physics: V_e survival probability shape

 (2) Understanding stellar formation: The metallicity of the Sun's core

 (3) Confirming MSW:

The Day / Night effect

Super-Kamiokande Combined analysis of SK I-IV PRL 112 (2014) 091805

 $A_{DN} = -3.2\% \pm 1.1$ (stat) ± 0.5 (syst) $= 2.7\sigma$

Physics Beyond the SNP

 (1) Searching for new physics: V_e survival probability shape

 (2) Understanding stellar formation: The metallicity of the Sun's core

 (3) Confirming MSW:

The Day / Night effect

(4) Probing energy loss/generation mechanisms: Neutrino luminosity (\mathcal{L}_{v}) $\frac{\mathcal{L}_{\odot}}{4\pi (A.U)^{2}} = \sum_{i} \alpha_{i} \Phi_{i}$ Energy released per v

Flux of Vs
Physics Beyond the SNP

(1) Searching for new physics: V_e survival probability shape

(2) Understanding stellar formation: The metallicity of the Sun's core

(3) Confirming MSW: The Day / Night effect

(4) Probing energy loss/generation mechanic Neutrino luminosity (\mathcal{L}_{v})

(5) Searching for symmetry: Precision flux & oscillation parameter measurements

Posters: Dr Caden,#76 Dr Hallman, #77 Dr Peeters, #134 (Dr Fatemighomi, #133) (Dr Coulter, #135) (Dr Grullon, #75)

SNO+ Solar Neutrino Detection

SNO+ Sensitivity

- 1 year livetime
- 50% fiducial volume (negligible external bkg)
- Assuming Borexino-level purification levels

	pep	⁸ B	⁷ Be	pp	CNO
1 yr	9%	7.5%	4%	~ a few %	~ 15 %
2 yr	6.5%	5.4%	2.8%		

SNO+ Sensitivity

- 1 year livetime
- 50% fiducial volume (negligible external bkg)
- Assuming Borexino-level purification levels

SNO+ Sensitivity

- 1 year livetime
- 50% fiducial volume (negligible external bkg)
- Assuming Borexino-level purification levels

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

\$/100

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

¹¹C produced by cosmic µ hitting organic molecules

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

¹¹C produced by cosmic µ hitting organic molecules

Ultra low cosmogenic backgrounds!

Kamioka: 2700 mwe Gran Sasso: 3500 mwe SNOLAB: 6080 mwe

¹¹C produced by cosmic µ hitting organic molecules

Ultra low cosmogenic backgrounds!

Upcoming workshop:

http://underground.physics.berkeley.edu/SolarJinPing.html

Noble Liquid Dark Matter Searches

Liquid neon (CLEAN):

50-T scale dark matter expt
No intrinsic backgrounds
27K: most contaminants freeze out
PSD discriminates electron / nuclear recoils

- \Rightarrow reject neutrons
- ⇒ Background free fiducial volume!
 - ⇒ %-level (ES) pp measurement

Noble Liquid Dark Matter Searches

Liquid neon (CLEAN):

50-T scale dark matter expt
No intrinsic backgrounds
27K: most contaminants freeze out
PSD discriminates electron / nuclear recoils

- \Rightarrow reject neutrons
- Background free fiducial volume!
 %-level (ES) pp measurement

Liquid xenon (XMASS, LZ):

XMASS: 835kg prototype; 20 T goal LUX (LZ): 0.37 under operation; 7.0 T goal pp requires *100 depletion of ¹³⁶Xe (2νββ)

"Mega-Ton" Scale

Hyper-Kamiokande

- 0.99e6 T (20* Super-K)
- 1750 mwe depth
- II5,000 8B ES / year
- 0.5% sensitivity to D-N amplitude variation
- 4σ confirmation of MSW

arXiv: 1309.0184

"Mega-Ton" Scale

Hyper-Kamiokande

- 0.99e6 T (20* Super-K)
- 1750 mwe depth
- II5,000 8B ES / year
- 0.5% sensitivity to D-N amplitude variation
- 4σ confirmation of MSW

arXiv: 1309.0184

LBNF • 40kT LAr (+ 50kT WCD?) - p5

• CC on 40 Ar, $E_{th} = 5$ MeV

$$\nu_e + {}^{40}Ar \to {}^{40}K^* + e^{-1}$$

Transition	Rate (evts/day)
Fermi	31
Gamow-Teller	88

Low Energy Neutrino Astronomy

111111111111

Posters: Dr Bick, #84

- 50kT LS (30kT FV solar), 30% coverage
- Unprecedented statistics at low-energy
 - 3σ discovery potential for 0.1%-amplitude temporal modulations in ⁷Be flux
 - CNO detection
 - Low-energy ⁸B spectrum (+ CC on ¹³C)

M.Wurm,TAUP 2013 <u>http://www.el5.ph.tum.de/research_and_projects/lena/</u>

Low Energy Neutrino Astronomy

Posters: Dr Bick, #84

- 50kT LS (30kT FV solar), 30% coverage
- Unprecedented statistics at low-energy
 - 3σ discovery potential for 0.1%-amplitude temporal modulations in ⁷Be flux
 - CNO detection
 - Low-energy ⁸B spectrum (+ CC on ¹³C)

M.Wurm, TAUP 2013 http://www.el5.ph.tum.de/research and projects/lena/

111111111111

Low Energy Neutrino Astronomy

111111111111

Posters: Dr Bick, #84

- 50kT LS (30kT FV solar), 30% coverage
- Unprecedented statistics at low-energy
 - 3σ discovery potential for 0.1%-amplitude temporal modulations in ⁷Be flux
 - CNO detection
 - Low-energy ⁸B spectrum (+ CC on ¹³C)

JUNO

- 20kT LS detector
- 700m rock overburden
- Goal of 3% / \sqrt{E} resolution

	Current	JUNO
Δm_{12}^2	~3%	~0.6%
Δm_{23}^2	~5%	~0.6%
$sin^2\theta_{12}$	~6%	~0.7%
$sin^2 \theta_{23}$	~20%	N/A
$sin^2 \theta_{13}$	~14% -> ~4%	~ 15%

Posters: Dr Li, #82

http://english.ihep.cas.cn/rs/fs/juno0815/

CC Detection: LENS

$$\nu_e + {}^{115}In \longrightarrow {}^{115}Sn^* + \beta^-$$

$$\tau = 4.76\mu s \longrightarrow \gamma(115 \text{keV}) + \gamma(497 \text{keV}) + {}^{115}Sn^*$$

- Delayed triple coincidence helps reject ¹¹⁵In bkg (need 10¹¹ rejection)
- Q = 115keV : 95% of pp spectrum
- Segmentation helps reject ext bkgs

CC Detection: LENS

$$\nu_e + {}^{115}In \longrightarrow {}^{115}Sn^* + \beta^-$$

$$\tau = 4.76\mu s \longrightarrow \gamma(115 \text{keV}) + \gamma(497 \text{keV}) + {}^{115}Sn$$

- Delayed triple coincidence helps reject ¹¹⁵In bkg (need 10¹¹ rejection)
- Q = 115keV : 95% of pp spectrum
- Segmentation helps reject ext bkgs

Posters: Dr Yokley, #85

			0070	/(0000/	
Source	рр	7Be	CNO*	CNO[†]	
Flux (/cm2/s)	6.00E+10	4.70E+09	4.97E+08	3.74E+08	
Flux (SNU) [Bah88]	468	116	15	11	
Cross section[Rap85]	1.00E-44	2.50E-44	2.50E-44	2.50E-44	
Survival probability	56	54	54	54	
Rate (per ton year)	26	6.2	1.2	0.9	
Rate (10 tons · 5 yr)	1296	310	58	43	J

• Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

http://underground.physics.berkeley.edu/WbLSWorkshop.html

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov ⇒ water-based LS

Phys. Rev. C 88 (2013) 065502

http://underground.physics.berkeley.edu/WbLSWorkshop.html

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

http://underground.physics.berkeley.edu/WbLSWorkshop.html

Critical Inputs to the Solar Program

Critical Inputs to the Solar Program

• Nuclear cross section measurements e.g. ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ ${}^{14}\text{N}(p,\gamma){}^{15}\text{O}$

LUNA collaboration Nuclear Physics, Section A 814 (2008), pp. 144-158

Critical Inputs to the Solar Program

• Nuclear cross section measurements e.g. ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ ${}^{14}\text{N}(p,\gamma){}^{15}\text{O}$

LUNA collaboration Nuclear Physics, Section A 814 (2008), pp. 144-158

• Terrestrial oscillation parameter measurements

Critical Inputs to the Solar Program

10

dN/dE_e [(22.5 kton) yr MeV]⁴

10

• Nuclear cross section measurements e.g. ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ ${}^{14}\text{N}(p,\gamma){}^{15}\text{O}$

LUNA collaboration Nuclear Physics, Section A 814 (2008), pp. 144-158 • Terrestrial oscillation parameter measurements

Summary

Summary

- Rich, diverse program of physics
- Study neutrino properties
- Sensitive search for new physics effects
- Unique probe of solar structure & solar system formation

Summary

- Rich, diverse program of physics
- Study neutrino properties
- Sensitive search for new physics effects
- Unique probe of solar structure & solar system formation

Thank you for your attention

Back-up slides
CC Detection: LENS

$$\nu_e + {}^{115}In \longrightarrow {}^{115}Sn^* + \beta^-$$

$$\tau = 4.76\mu s \longrightarrow \gamma(115 \text{keV}) + \gamma(497 \text{keV}) + {}^{115}Sn^*$$

- Delayed triple coincidence helps reject ¹¹⁵In bkg (need 10¹¹ rejection)
- Q = 115keV : 95% of pp spectrum
- Segmentation helps reject ext bkgs

- Low index barriers provide light channeling
- $\mu LENS$ completed: test detector optics
- mLENS under construction: air boundaries to study background rejection

LENS Sensitivity

10T In, 5 years

GS98

AGSS09

· /							
Source	pp	pep	7Be	CNO ^β	CNO*	CNO[†]	
Flux (/cm2/s)	6.00E+10	1.40E+08	4.70E+09	1.10E+09	4.97E+08	3.74E+08	
Flux (SNU) [Bah88]	468	8	116	32	15	11	ſ
Cross section[Rap85]	1.00E-44	5.40E-44	2.50E-44	2.50E-44	2.50E-44	2.50E-44	ſ
Survival probability	56	52	54	54	54	54	
Rate (per ton year)	26	0.4	6.2	2.5	1.2	0.9	ſ
Rate (10 tons · 5 yr)	1296	21	310	127	58	43	J

		high-Z SSM	low-Z SSM	luminosity constrained fit to data	
ν flux	E_{ν}^{\max} (MeV)	GS98-SFII	AGSS09-SFII	Solar	units
$p+p\rightarrow^{2}H+e^{+}+\nu$	0.42	$5.98(1 \pm 0.006)$	$6.03(1 \pm 0.006)$	$6.05(1^{+0.003}_{-0.011})$	$10^{10}/{\rm cm}^2{\rm s}$
$p+e^-+p\rightarrow^2H+\nu$	1.44	$1.44(1 \pm 0.012)$	$1.47(1 \pm 0.012)$	$1.46(1^{+0.010}_{-0.014})$	$10^8/\mathrm{cm}^2\mathrm{s}$
$^{7}\mathrm{Be}{+}\mathrm{e}^{-}{\rightarrow}^{7}\mathrm{Li}{+}\nu$	0.86~(90%)	$5.00(1 \pm 0.07)$	$4.56(1 \pm 0.07)$	$4.82(1^{+0.05}_{-0.04})$	$10^9/\mathrm{cm}^2\mathrm{s}$
	0.38~(10%)				
$^{8}\mathrm{B}{\rightarrow}^{8}\mathrm{Be}{+}\mathrm{e}^{+}{+}\nu$	~ 15	$5.58(1 \pm 0.14)$	$4.59(1 \pm 0.14)$	$5.00(1 \pm 0.03)$	$10^6/\mathrm{cm}^2\mathrm{s}$
$^{3}\text{He+p}{\rightarrow}^{4}\text{He+e^+}{+}\nu$	18.77	$8.04(1 \pm 0.30)$	$8.31(1 \pm 0.30)$	—	$10^3/\mathrm{cm}^2\mathrm{s}$
$^{13}\mathrm{N}{\rightarrow}^{13}\mathrm{C}{+}\mathrm{e}^{+}{+}\nu$	1.20	$2.96(1 \pm 0.14)$	$2.17(1 \pm 0.14)$	≤ 6.7	$10^8/\mathrm{cm}^2\mathrm{s}$
$^{15}\mathrm{O}{\rightarrow}^{15}\mathrm{N}{+}\mathrm{e}^{+}{+}\nu$	1.73	$2.23(1 \pm 0.15)$	$1.56(1 \pm 0.15)$	≤ 3.2	$10^8/\mathrm{cm}^2\mathrm{s}$
$^{17}\mathrm{F}{\rightarrow}^{17}\mathrm{0}{+}\mathrm{e}^{+}{+}\nu$	1.74	$5.52(1 \pm 0.17)$	$3.40(1 \pm 0.16)$	$\leq 59.$	$10^6/\mathrm{cm}^2\mathrm{s}$
$\chi^2/P^{ m agr}$		3.5/90%	3.4/90%		

current issues focus on the two models above

 Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

$$\begin{aligned} \sigma(E_{\nu}) &= \frac{G_F^2 \cos^2 \theta_c}{2\pi} k_e E_e \mathcal{F}(Z+1, E_e) d\cos\theta dE_e \left[1.0(1+\cos\theta) \delta(E_{\nu}-0.35-E_e) \right. \\ &+ 1.7471(1-\frac{1}{3}\cos\theta) \delta(E_{\nu}-0.35-E_e) + 1.6303(1-\frac{1}{3}\cos\theta) \delta(E_{\nu}-0.35-0.4291-E_e) \right. \\ &+ 0.01135(1-\frac{1}{3}\cos\theta) \delta(E_{\nu}-0.35-6.73-E_e) + 0.07317(1-\frac{1}{3}\cos\theta) \delta(E_{\nu}-0.35-7.21-E_e) \right] \end{aligned}$$

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

$$\begin{aligned} \sigma(E_{\nu}) &= \frac{G_F^2 \cos^2 \theta_c}{2\pi} k_e E_e \mathcal{F}(Z+1, E_e) d\cos\theta dE_e \left[1.0(1 + \cos\theta (\delta(E_{\nu}) - 0.35 - E_e) + 1.7471(1 - \frac{1}{3} \cos\theta (\delta(E_{\nu}) - 0.35 - E_e) + 1.6303(1 - \frac{1}{3} \cos\theta (\delta(E_{\nu}) - 0.35 - 0.4291 - E_e) + 0.01135(1 - \frac{1}{3} \cos\theta (\delta(E_{\nu}) - 0.35 - 6.73 - E_e) + 0.07317(1 - \frac{1}{3} \cos\theta (\delta(E_{\nu}) - 0.35 - 7.21 - E_e) \right] \end{aligned}$$

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

$$\begin{aligned} \sigma(E_{\nu}) &= \frac{G_F^2 \cos^2 \theta_c}{2\pi} k_e E_e \mathcal{F}(Z+1, E_e) d\cos \theta dE_e \left[1.0(1 + \cos \theta (\delta(E_{\nu}) - 0.35 - E_e) + 1.7471(1 - \frac{1}{3} \cos \theta (\delta(E_{\nu}) - 0.35 - E_e) + 1.6303(1 - \frac{1}{3} \cos \theta (\delta(E_{\nu}) - 0.35 - 0.4291 - E_e) + 0.01135(1 - \frac{1}{3} \cos \theta (\delta(E_{\nu}) - 0.35 - 6.73 - E_e) + 0.07317(1 - \frac{1}{3} \cos \theta (\delta(E_{\nu}) - 0.35 - 7.21 - E_e) \right] \end{aligned}$$

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Electron Kinetic Energy / MeV

Phys. Rev. C 88 (2013) 065502

- Load large water Cherenkov detector with e.g. ⁷Li for CC interaction "Salty water Cherenkov detectors" W.C. Haxton PRL 76 (1996) 10
- Water Cherenkov \Rightarrow water-based LS

Phys. Rev. C 88 (2013) 065502

$$\sigma(E_{\nu}) = \frac{G_F^2 \cos^2 \theta_c}{2\pi} k_e E_e \mathcal{F}(Z+1, E_e) d \cos \theta dE_e \left[1.0(1 + \cos \theta \delta(E_{\nu}) - 0.35 - E_e) + 1.7471(1 - \frac{1}{3} \cos \theta \delta(E_{\nu}) - 0.35 - E_e) + 1.6303(1 - \frac{1}{3} \cos \theta \delta(E_{\nu}) - 0.35 - 0.4291 - E_e) + 0.01135(1 - \frac{1}{3} \cos \theta \delta(E_{\nu}) - 0.35 - 6.73 - E_e) + 0.07317(1 - \frac{1}{3} \cos \theta \delta(E_{\nu}) - 0.35 - 7.21 - E_e) \right]$$

$$result on the equation of the equation$$

Detected Spectrum

Detected Spectrum

Low Energy Neutrino Astronomy

- 50kT LS (30kT FV solar), 30% coverage
- Unprecedented statistics at low-energy
 - Time modulations in ⁷Be flux
 - Low-energy ⁸B in transition region (+ CC on ¹³C)

CNO detection

Detection	Neutrino	BPS08(G	S) (cpd)	BPS08(AC	GS) (cpd)
Channel	Source	total	$> 250 \mathrm{keV}$	total	$>250 \mathrm{keV}$
$\nu e \rightarrow e \nu$	pp	626 ± 3	41.5 ± 0.3	632 ± 3	42.0 ± 0.2
	pep	785 ± 8	609 ± 6	806±8	626 ± 6
	hep	$0.29 {\pm} 0.03$	$0.27 {\pm} 0.03$	$0.30 {\pm} 0.05$	$0.29 {\pm} 0.05$
	⁷ Be	14490 ± 864	8307 ± 495	12968 ± 779	7434 ± 447
	⁸ B	141 ± 15	137 ± 15	113 ± 12	108 ± 12
	CNO	$2919 {\pm} 468$	909 ± 146	1874 ± 279	584 ± 87
${}^{13}{ m C}(u_e,e){}^{13}{ m N}$	⁸ B	$2.9{\pm}0.3$		$2.6{\pm}0.2$	

http://www.el5.ph.tum.de/research_and_projects/lena/

LENA Sensitivity

5σ discrimination after 3-5 years

M.Wurm, TAUP 2013

LENA Sensitivity

3σ discovery potential for 0.1%amplitude temporal fluctuations in ⁷Be

- Day-night effect (predicts A=0.1%)
- Correlations to T=11 yr solar cycle
- Helioseismic g-modes

5σ discrimination after 3-5 years

M.Wurm, TAUP 2013

(E) Time Dependence SAGE

The longest (almost uninterrupted) running-time of any operating solar neutrino experiment 1990 - 11/2011:214 runs, 396 data sets

Result :: $64.5_{-2.7}^{+2.7}$ (stat) $_{-2.8}^{+2.6}$ (syst) SNU or $64.5_{-3.9}^{+3.7}$ SNU

SAGE continues to perform regular extractions every 4 weeks

I SNU = I
interaction/s in
target with
I0^36 atoms of
V absorbing
isotope

Phys. Rev. D 72, 052010 (2005)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

Phys. Rev. D 72, 052010 (2005)

Astro. Phys. J 710:540-548 (2010)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

g-mode solar core oscillations can affect production rate / survival probability

Phys. Rev. D 72, 052010 (2005)

Astro. Phys. J 710:540-548 (2010)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

g-mode solar core oscillations can affect production rate / survival probability

I.T ϵ [I, I44] /day Sensitive to amplitude \geq 12%

Phys. Rev. D 72, 052010 (2005)

Astro. Phys. J 710:540-548 (2010)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

g-mode solar core oscillations can affect production rate / survival probability

I.T ϵ [I, I44] /day Sensitive to amplitude \geq 12%

2. Directed search in region of claimed observations Sensitive to amplitude $\geq 10\%$

Phys. Rev. D 72, 052010 (2005)

Astro. Phys. J 710:540-548 (2010)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

g-mode solar core oscillations can affect production rate / survival probability

I.T ϵ [I, I44] /day Sensitive to amplitude \geq 12%

2. Directed search in region of claimed observations Sensitive to amplitude $\geq 10\%$

3. Broadband search (noise)

0.8

Confidence Level

Phys. Rev. D 72, 052010 (2005)

Astro. Phys. J 710:540-548 (2010)

Variation due to eccentricity of Earth's orbit

No additional periodicity observed T = [I d , I0 yrs]

Inconsistent with Sturrock et al. claim of 7% modulation of ⁸B neutrino flux in SK data

g-mode solar core oscillations can affect production rate / survival probability

I.T ϵ [I, I44] /day Sensitive to amplitude \geq 12%

2. Directed search in region of claimed observations Sensitive to amplitude $\geq 10\%$

3. Broadband search (noise)

No significant signal observed

Lack of D/N rules out LOW region at $> 3\sigma$

Lack of D/N rules out LOW region at $> 3\sigma$

Lack of D/N rules out LOW region at $> 3\sigma$

TABLE I. Day/night asymmetry for each SK phase, coming from separate day and night rate measurements (middle column) and the amplitude fit (right column). The uncertainties shown are statistical and systematic. The entire right column assumes the SK best-fit point of oscillation parameters.

3	$A_{\rm DN} \pm ({\rm stat}) \pm ({\rm syst})$	$A_{\rm DN}^{\rm fit}\pm({ m stat})\pm({ m syst})$
SK-I	$(-2.1 \pm 2.0 \pm 1.3)\%$	$(-2.0 \pm 1.7 \pm 1.0)\%$
SK-II	$(-5.5 \pm 4.2 \pm 3.7)\%$	$(-4.3 \pm 3.8 \pm 1.0)\%$
SK-III	$(-5.9 \pm 3.2 \pm 1.3)\%$	$(-4.3 \pm 2.7 \pm 0.7)\%$
SK-IV	$(-5.3 \pm 2.0 \pm 1.4)\%$	$(-34 \pm 1.8 \pm 0.6)\%$
Combined	$(-4.2 \pm 1.2 \pm 0.8)\%$	$(-3.2 \pm 1.1 \pm 0.5)\%$

 $A_{DN} = -3.2\% \pm 1.1$ (stat) ± 0.5 (syst) $= 2.7\sigma$ -

$$\tan^2 \theta_{12} = 0.446^{+0.030}_{-0.029}$$
$$\Delta m^2_{21} = 7.41^{+0.21}_{-0.19} \times 10^{-5} \text{eV}^2$$
$$\sin^2 \theta_{13} = 2.5^{+1.8}_{-1.5} \times 10^{-2}$$

Large Mixing Angle (LMA) solution clearly preferred

$$tan^{2}\theta_{12} = 0.446^{+0.030}_{-0.029}$$
$$\Delta m^{2}_{21} = 7.41^{+0.21}_{-0.19} \times 10^{-5} \text{eV}^{2}$$
$$sin^{2}\theta_{13} = 2.5^{+1.8}_{-1.5} \times 10^{-2}$$

0.20

Large Mixing Angle (LMA) solution clearly preferred

Quark-lepton complementarity

Quark-lepton complementarity Tri-Bi-Maximal

Quark-lepton complementarity Tri-Bi-Maximal

 θ_{12} non-maximal by > 5 σ