Liquid Argon Time Projection Chambers: MicroBooNE and Future Prospects for Neutrino
Oscillation Physics

MOTIVATION: LSND & MiniBooNE

/’

/

17.5

15

Beam Excess

Figure 1: Excess number of 176 in ’U_M
beam (LSND collaboration).
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In the 90’s, LSND observed an excess of low \
energy electron anti-neutrino events (Fig 1).
10 years later, MiniBooNE saw an excess in
both neutrino and anti-neutrino modes that
could be consistent with LSND(Fig 2). This may
suggest physics beyond the standard model. /
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Figure 2: MiniBooNE observed an excess that
may be consistent with LSND’s results at a

at is the Origin Of similar L/E, the controllable variable in neutrino

oscillation experiments (MiniBooNE

thIS excess ? collaboration).
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LArTPCs are ideal detectors for neutrino
experiments. MicroBooNE—the latest in a
series of Booster beam experiments at
Fermilab—is a LArTPC that will investigate the
excess low energy events seen by MiniBooNE

(Fig 2).
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Figure 3: Properties which make Liquid Argon (LAr) an appealing detector medium.
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LArTPC Concept
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Figure 4: Interaction and drift of an event in a Time Projection Chamber
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When an interaction occurs in MicroBooNE’s
TPC, charged particles ionize Liquid Argon. An
applied electric field causes freed electrons to
drift towards 3 wire planes (Fig 4). Readout
from the planes and 32 8" photomultiplier
tubes (PMTs) enables high-precision tracking.
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MicroBooNE Detector

 Medium Liquid Argon

Temperature 87.3 K

- Drift Velocity 1.63 mm/ps

Electric Field 500 V/cm

Drift Time 1.63 ms

Light Collection & 32 8 PMTs
4 light guide
prototypes

Readout 8256 wires
3 planes
3 mm pitch

Figure 5a: (Left) MicroBooNE specifics. Figure 5b: (Right) MicroBooNE Cryostat and TPC

with 6’ figure for scale.

Figure 6: (Left) LAr scintillates outside the
visible spectra at 128nm. In order to detect
light from events in LAr, MicroBooNE’s PMTs
sit behind a plate coated in wavelength
shifting material (Tetraphenyl Butadiene
(TPB)).

/ LArTPCs provide excellent tracking resolution \
(Fig 7). Using calorimetric reconstruction and
the topology of an interaction, MicroBooNE will
be able to distinguish between electrons and
photons (Fig 8), MiniBooNE’s main background

\ (Fig 2). /
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Potential Solutiong to
MiniBooNE Anomaly
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Figure 8: Interactions as seen by the BooNEs.
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MicroBooNE will also study neutrino-nucleon
interactions around 1GeV. These studies will lead
to improved nuclear models and new and refined

neutrino cross section measurements.
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Figure 9a (Left): MiniBooNE-measured cross sections (G. Zeller) for QF events around 1 for future, b|gger LArTPCs such as LBNF ensu ring

GeV. The fine-grained resolution of the LArTPC makes nuclear cross sections of high
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priority interest to the MicroBooNE team. Figure 9b (Right): Construction of

MicroBooNE is well underway, with TPC installation taking place last December.
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/ LArTPCs will continue to play a prominent role in \

O neutrino physics beyond MicroBooNE. There are
current plans to do a precision search for sterile
neutrinos in the BNB (Fig 11), as well as the long
baseline neutrino facility (LBNF) in Lead, South

/ Dakota.

o

- .
s Broster
: Neutrino

/. ,
f ” (

Figure 11: MicroBooNE in the BNB with the proposed LArl1-ND. With multiple
detectors, we will be able to completely characterize an oscillation signal.

" Lar1-ND will also act as a direct R&D prototype A

the continuous development of the LArTPC
_ technology. y




