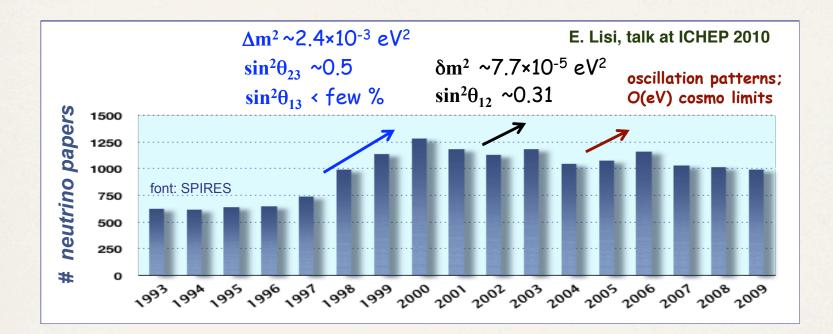
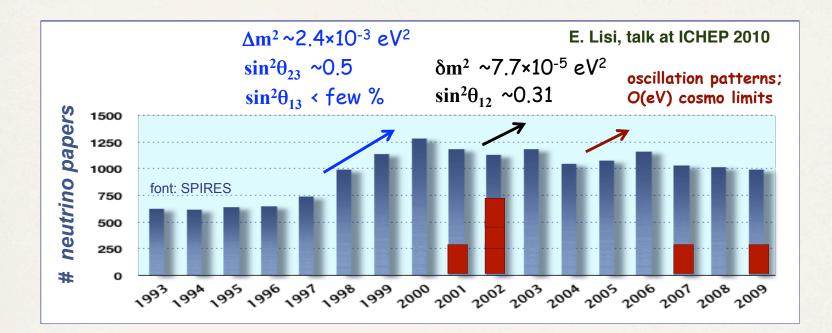
Neutrino Connections



Joseph Lykken

‡ Fermilab


Neutrino 2014, Boston, June 7, 2014

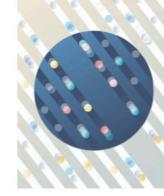
Neutrinos are Interesting

According to the inSPIRE database, 2,900 neutrino papers were produced in 2012, compared to about 2,400 papers concerning the Higgs boson

Neutrinos are Interesting

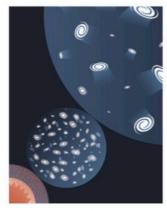
red bars = neutrino papers by J.Lykken (times 250)

According to the inSPIRE database, 2,900 neutrino papers were produced in 2012, compared to about 2,400 papers concerning the Higgs boson


Neutrinos are one of the main science drivers of particle physics

Five intertwined scientific Drivers were distilled from the results of a yearlong communitywide study:

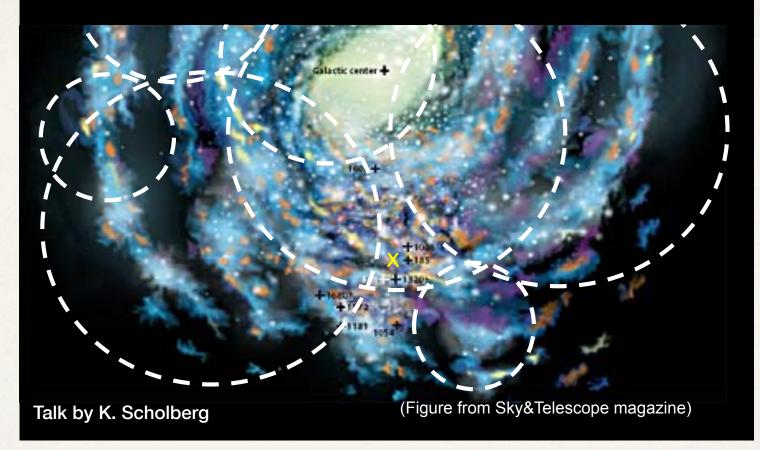
- Use the Higgs boson as a new tool for discovery
- Pursue the physics associated with neutrino mass
- Identify the new physics of dark matter
- Understand cosmic acceleration: dark energy and inflation
- Explore the unknown: new particles, interactions, and physical principles


Higgs boson

Neutrino mass

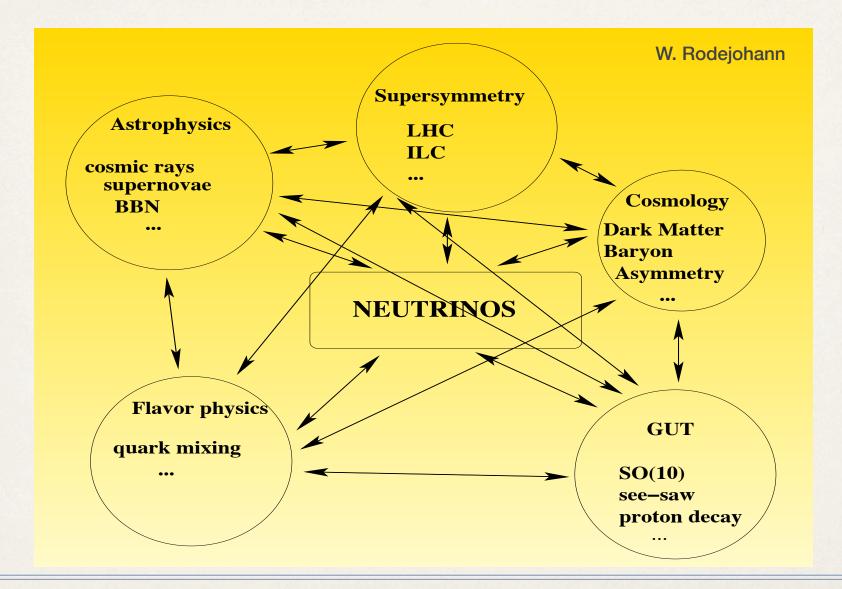
Dark matter

Cosmic acceleration



Explore the unknown

Joseph Lykken


The neutrinos are coming!

Far side of the Milky Way is ~650 light-centuries away... ... ~2000 core collapses have happened already....

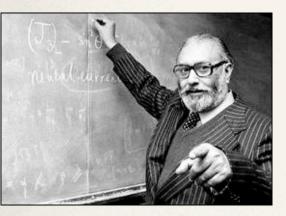
Neutrinos are key actors in important physical processes on Earth and out in the Universe

Neutrinos are everywhere, and related to everything

Joseph Lykken

Neutrino Connections

- What are the dynamical origins of fermion masses, mixings and CP violation?
- How does the Higgs talk to neutrinos?
- Neutrinos and dark matter?
- Neutrinos and unification?
- Neutrinos and leptogenesis?
- Extra credit: Are neutrinos related to dark energy?



Motivates a multi-decade global experimental effort

Joseph Lykken

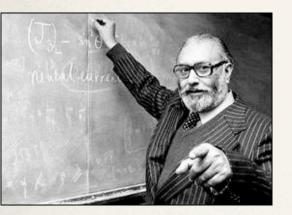
The dynamical origins of mass

- A headline of the Standard Model is that elementary particles do not naturally have mass,
- But they can acquire mass through dynamics
- In stark contrast to spin, the other conserved quantum number of Poincare invariance

Joseph Lykken

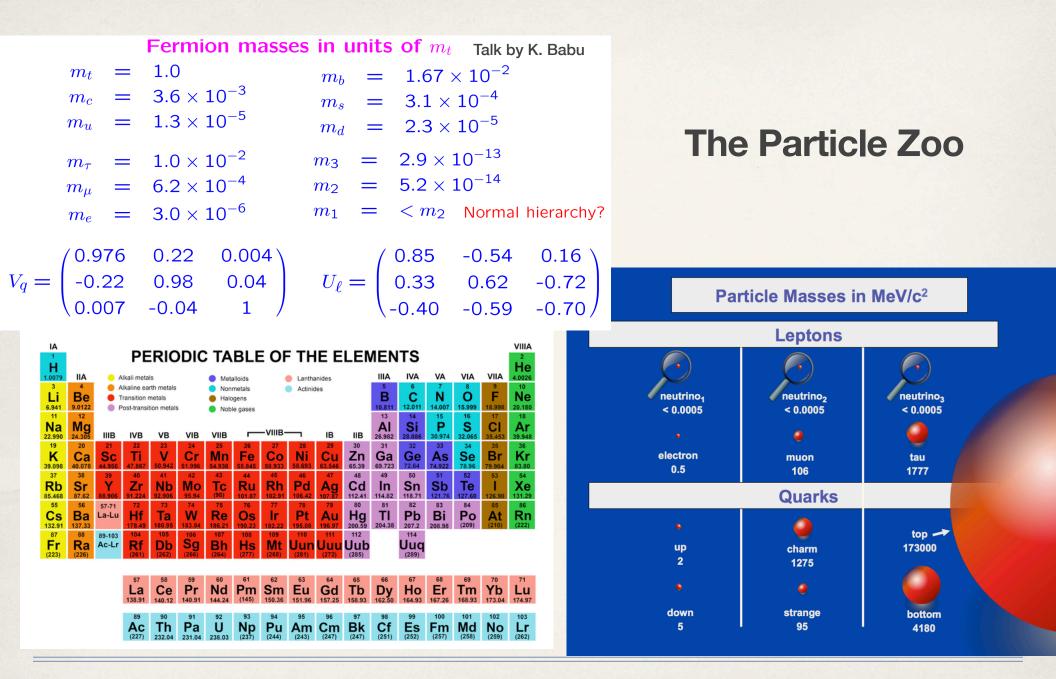
Higgs + BEGHK (1964)

- a fundamental scalar field with self-interactions
- can cause spontaneous (global) symmetry-breaking in the vacuum
- and give gauge bosons mass
- while respecting the delicate choreography of gauge symmetry with Lorentz invariance



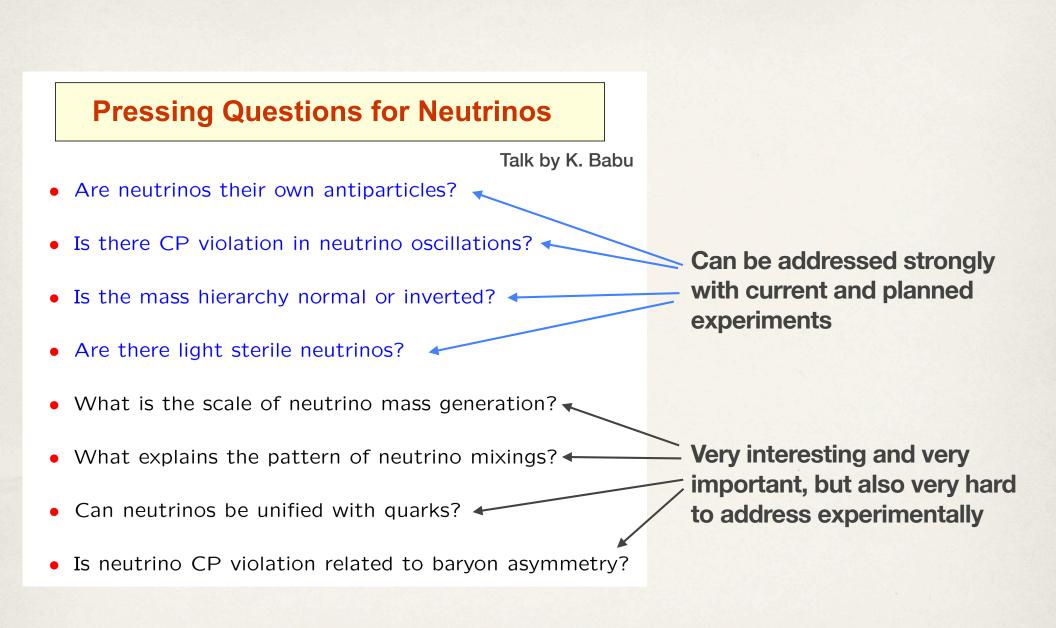
Higgs explains: and if you started with a complex scalar field, there will be a neutral massive boson left over, and eventually you get a trip to Stockholm

Joseph Lykken


The dynamical origins of mass

- ATLAS and CMS seem to have discovered a weakly self-coupled fundamental boson that couples to other heavy particles proportionally to their masses
- If this holds up, then we do in fact understand mass generation for the W and Z bosons
- But for fermions we are just getting started...

$$y_e \,\overline{L} \,H \,e_R + h.c. \to y_e \frac{v}{\sqrt{2}} (\overline{e}_L e_R + \overline{e}_R e_L)$$


Joseph Lykken

Flavor is the big over-arching challenge of particle physics for this half of the 21st century

- What are the dynamical origins of fermion masses, mixings, and CP violation?
- What are the scales associated with this dynamics?
- What are the symmetries and symmetry-breakings?
- What is the full Higgs sector and how does it work?
- How are quark and lepton flavor related?
- What other flavor sectors are accessible, e.g.
 - superpartners?
 - dark matter?

Gathering clues from many directions

- Look for new sources of flavor-breaking/CPV in the quark sector
- Determine the flavor structure of the neutrino sector
- Determine the full Higgs sector and its flavor implications
- Look for nonconservation of lepton number, baryon number, and charged lepton flavor violation
- Find the portals to the dark sector and the dark particle content
- Any new physics and any new scales could be relevant

Pursuing the origins of neutrino masses

- We studied the quark sector for 50 years and measured everything with precision, and we still have no clue where the underlying hierarchies come from, or the scale of the new physics responsible
- So studying neutrinos is hopeless, right?
- Neutrino masses probably involve the same unknown principles as quark masses, plus extra complications involving unreachable energy scales
- Why is pursuing these oddball neutrinos a good strategy?

Pursuing the origins of atomic structure

- We studied normal elements like carbon and lead for 50 years and measured everything with precision, and we still have no clue where the underlying hierarchies come from, or the principles of the new physics responsible
- So studying radium is hopeless, right?
- Radium probably involves the same unknown principles as carbon, plus extra complications
- Why is pursuing these oddball elements a good strategy?

Neutrinos point the way beyond the Standard Model

A general argument:

- Renormalizable QFTs are just stand-ins for effective field theories that flow down from some fancy UV completion associated to (at least one) actual UV energy scale S. Weinberg, J. Polchinski, K. Wilson, ...
- The SM at lab energies is an approximation to some effective theory with a bunch of higher dimension operators suppressed by powers of UV scales
- If you start with the UV theory, you will have to fine tune to get to something that looks like the Standard Model at lab energies
- This is the Naturalness / fine tuning / hierarchy problem

This is a good argument!

- We believed this argument so much that we have spent billions of dollars of the taxpayers money over 30 years looking for evidence of the higher dimension operators
- So far we have seen no such evidence, with the notable exception of neutrino masses
- Neutrino masses may be explained by the Weinberg operator, the unique dimension 5 operator extension of the Standard Model

$$\frac{y_{\nu}}{M_{\rm new}}(\bar{L}H)^2 \to \frac{y_{\nu}v^2}{M_{\rm new}}\bar{\nu}_L\nu_L^c$$

Joseph Lykken

Neutrino imply lots of new physics

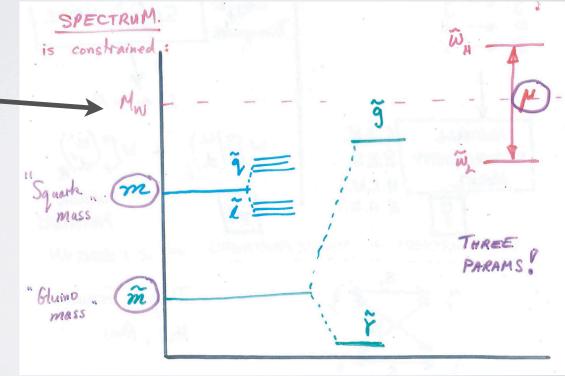
$$\frac{y_{\nu}}{M_{\text{new}}}(\bar{L}H)^2 \to \frac{y_{\nu}v^2}{M_{\text{new}}}\bar{\nu}_L\nu_L^c$$

- In that case, naturalness demands that the scale integrated out to get the dimension 5 operator is less than about 10⁷ GeV
 De Gouvea, Hernandez, Tait, arXiv:1402.2658
- So the popular Type I superheavy see-saw picture of neutrinos is fine tuned without SUSY or some other major change in the picture
- If neutrinos talk to the Higgs some other way, e.g. Higgs triplets, then at least the first step in the story may be new physics at the TeV scale
- If neutrinos are purely Dirac, there is no see-saw scale, but the tiny Yukawa couplings themselves may have a Froggatt-Nielsen type explanation involving new superheavy scales. So again you need SUSY or something to stabilize the hierarchy of energy scales

the canonical BSM paradigm

- Natural + ~minimal-flavor-violating SUSY at the weak scale
- Neutralino dark matter
- A grand desert populated at the high end by a hidden sector for dynamical SUSY breaking, some heavy Majorana neutrinos, maybe PQ axions, inflatons
- Gauge coupling unification circa 10¹⁶ GeV accompanied by GUT or stringy unification of matter and gauge forces
- Planck scale stringiness with lots of extra structure to explain flavor etc.

there are lots of good arguments for this picture

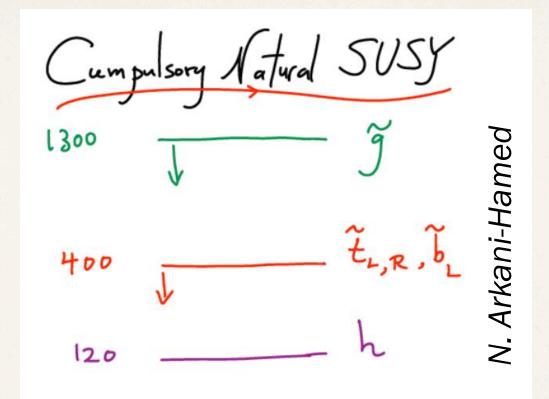

The Naturalness Dogma: caveat emptor

NATURAL SUSY, 1984 From Lawrence Hall's talk at SavasFest

W boson near the top of the spectrum....

1984 was a utopian year for SUSY.

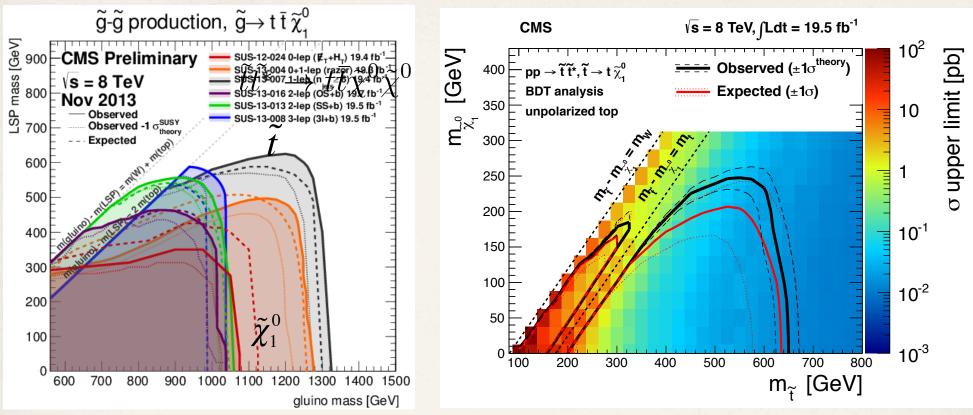
Times have changed!



Talk by Matt Reece at LHCP 2013

Neutrino 2014 Conference, Boston, June 7, 2014

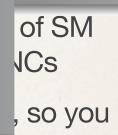
Joseph Lykken


SUSY agonistes

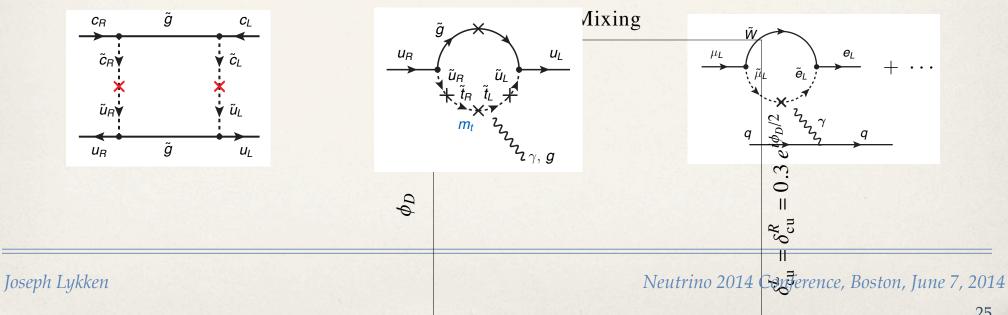
 If you really believe in a strong naturalness argument, then we should have seen gluinos and stops already at the LHC

1

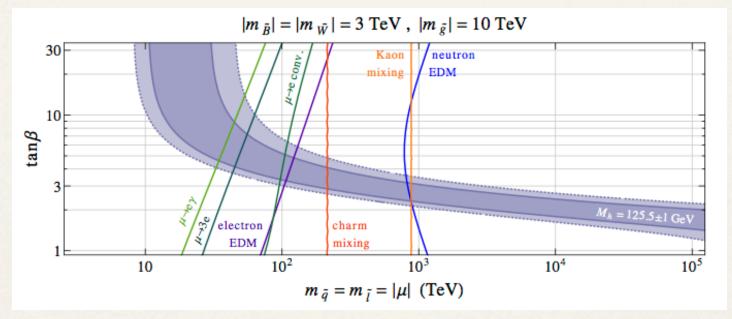
SUSY agonistes



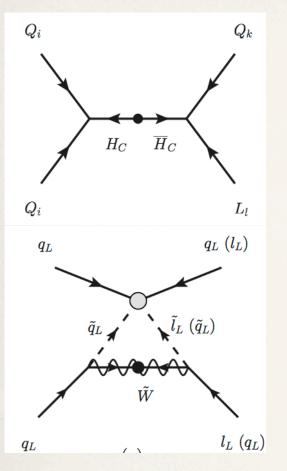
- Of course it is possible that we just missed the superpartners in the last LHC runs at 7 and 8 TeV, and they will show up quickly in the new run at 13 TeV
- Stranger thipse have beenened: both the LED and Toyetrop collider experiments just missed discovering the higgs boson


Moving SUSY to higher ground?

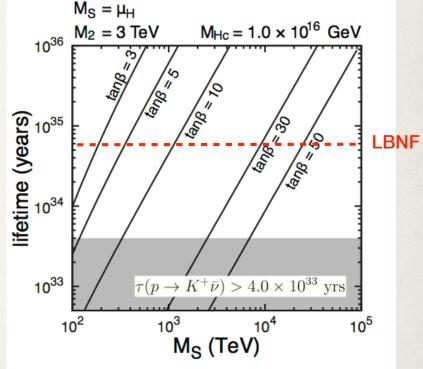
- Just in case, many theorists are busy making arguments for why it was obvious all along that superpartners should not be within reach of the LHC
- 10 TeV, 100 TeV, even 1 PeV are becoming popular mass scales for superpartners
- Moving to higher ground is very expensive...



will have to get clues normale processes.

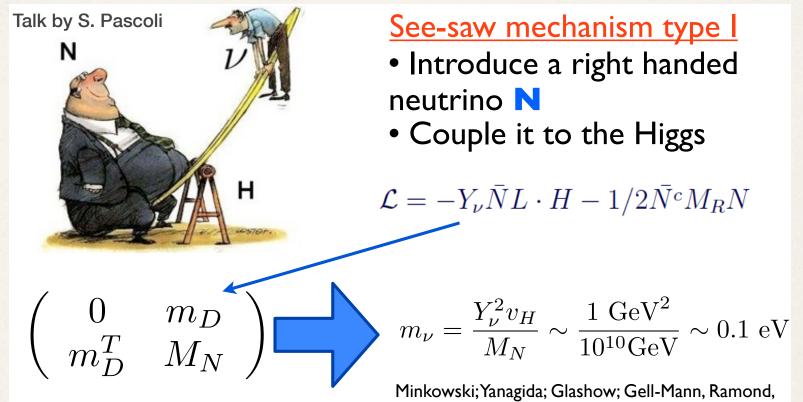

The scales of flavor?

- Heavy flavor probes up to 50 TeV (LHCb and Belle II)
- EDMs can probe up to 100 to 1000 TeV
- Kaons probe up to 1000 TeV
- MEG, Mu2e, Mu3e can probe 100 to 1000 TeV



W. Altmannshofer, R. Harnik, J. Zupan, arXiv:1308.3653

Minimal SUSY SU(5) revived



- color-triplet scalars that live in the Higgs 5-plet induce dimension five proton decay in SUSY SU(5)
- seemed to rule out the minimal scenario, since the proton lifetime was $\tau(p \to K^+ \bar{\nu}) \lesssim 10^{30} {
 m yrs}$
- but with squark masses lifted to ~100 TeV, there is an extra suppression
- predicts that LBNF will see proton decay

J. Hisano et al, arXiv:1304.3651

Neutrino mass and physics at superheavy scales

Minkowski; Yanagida; Glashow; Gell-Mann, Ramond, Slansky; Mohapatra, Senjanovic

See-saw type I models can be embedded in GUT theories and explain the baryon asymmetry via leptogenesis.

Joseph Lykken

Neutrino mass and physics at superheavy scales?

The pessimist says:

- We don't have enough ways of experimentally accessing new physics at superheavy scales
- And it is easy to write down general models, e.g. of leptogenesis, with 37 parameters invisible to any lower energy probes
- So it is hopeless to study neutrinos as a window to high scales

Neutrino mass and physics at superheavy scales?

The optimist says:

- Nature seems to have given us a number of ways of experimentally accessing new physics at superheavy scales: neutrinos, proton decay, inflation, maybe SUSY, ...
- Don't care about general models; we are looking for a very special model. Probably it has very few arbitrary parameters and some striking characteristic features
- So pursuing neutrinos and thinking about the origins of neutrino mass is a great window to high scales

Neutrino masses: what are we trying to explain?

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\lambda_2} & 0 \\ 0 & 0 & e^{i\lambda_3} \end{pmatrix}$$

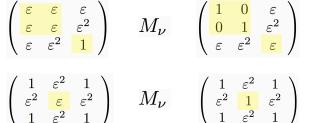
$$U_{\rm TBM} = \begin{pmatrix} \sqrt{\frac{2}{3}} & \sqrt{\frac{1}{3}} & 0\\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}}\\ \sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{3}} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

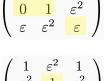
$$U_{\rm BM} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}}\\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

 $U_{\rm LC} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ -\frac{c_{23}^{\nu}}{\sqrt{2}} & \frac{c_{23}^{\nu}}{\sqrt{2}} & s_{23}^{\nu}\\ \frac{s_{23}^{\nu}}{\sqrt{2}} & -\frac{s_{23}^{\nu}}{\sqrt{2}} & c_{23}^{\nu} \end{pmatrix}$ $L_e - L_{\mu} - L_{\tau}$

- Theorists making models of quark masses focus on explaining the hierarchies of masses and mixings, and ignore O(1) factors
- Theorists making models of neutrino masses do the opposite
- Usually assume that the PMNS picture is correct, and try to reproduce the numbers
- Make extra assumptions in order to make testable predictions

31


We really, really, need to know the mass hierarchy


Mass hierarchy as texture and model discriminator

> Typically re-covered in more complicated cases, e.g. including charged lepton mixings, θ_{13} >0 etc:

Hier	arc	VS.				
(ε	ε	ε			

Hierarchy: inverted

(example from hep-ph/0612169)

- > Translates into flavor symmetry models (Albright, Chen, hep-ph/0608137) See also: talk by Morimitsu Tanimoto
- Neutrino mass ordering is the prime model discriminator!

TABLE I: Mixing Angles for Models with Lepton Flavor Symmetry.									
Reference Hierarchy		Hierarchy	$\sin^2 2\theta_{23}$	$\tan^2\theta_{12}$	$\sin^2 heta_{13}$				
Anarchy	Mo	del:							
-	18]	Either			≥ 0.011 @ 2σ				
$L_e - L_\mu -$	\mathbf{L}_{τ}	Models:							
BM [35]	Inverted			0.00029				
BCM [3	36]	Inverted			0.00063				
GMN1 [3	37]	Inverted		≥ 0.52	≤ 0.01				
GL [38]	Inverted			0				
PR [39]	Inverted		≤ 0.58	≥ 0.007				
S ₃ and S ₄	ı M	odels:							
CFM [4	40]	Normal			0.00006 - 0.001				
HLM [4	41]	Normal	1.0	0.43	0.0044				
· ·	1	Normal	1.0	0.44	0.0034				
KMM [4	42]	Inverted	1.0		0.000012				
-	43]	Normal			0.0024				
MNY [4	44]	Normal			0.000004 - 0.000036				
MPR [4	45]	Normal			0.006 - 0.01				
RS [4	46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02				
	1	Normal	$\theta_{23} < 45^{\circ}$		0				
TY [4	47]	Inverted	0.93	0.43	0.0025				
т [4	48]	Normal			0.0016 - 0.0036				
A ₄ Tetral	hed	ral Models:							
ABGMP [4		Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037				
	50]	Normal			0.006 - 0.04				
Ma [51]	Normal	1.0	0.45	0				
SO(3) Mc	ode	ls:							
М [{	52]	Normal	0.87 - 1.0	0.46	0.00005				
Texture 2	Zero	o Models:							
	53]	Normal			0.007 - 0.008				
	1	Inverted			> 0.00005				
		Inverted			> 0.032				
WY [5	54]	Either			0.0006 - 0.003				
	1	Either			0.002 - 0.02				
		Either			0.02 - 0.15				

Talk by W. Winter

Neutrino data is ruling out whole classes of models

In 2012

Reactor angle θ_{13} was measured by T2K, Daya Bay, MINOS, RENO, Double Chooz

 $\theta_{13} \simeq 9^{\circ} \simeq \theta_c / \sqrt{2}$

Tri-bimaximal mixing was ruled out !

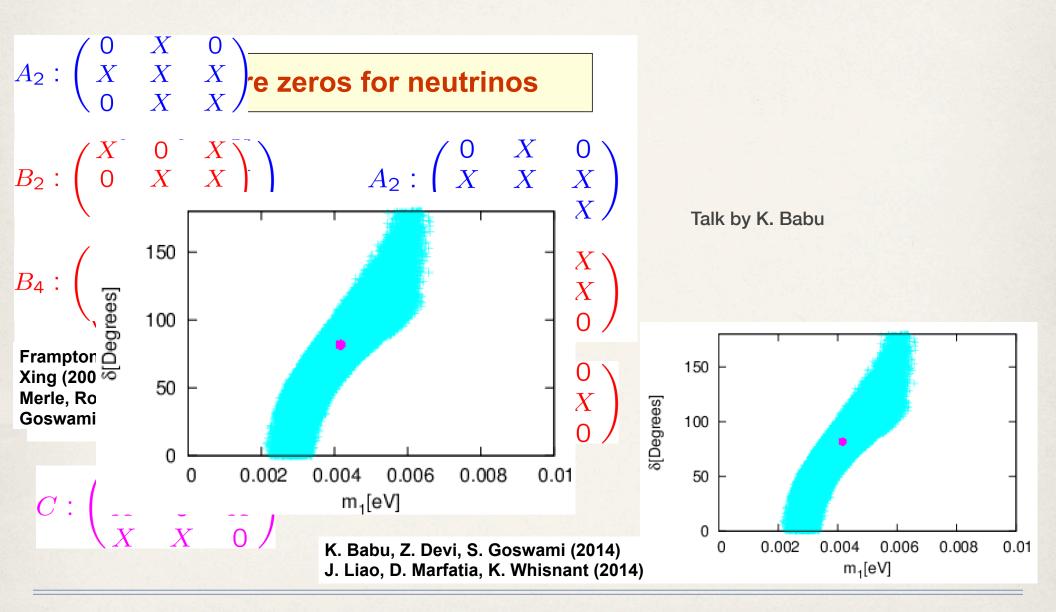
• Deviation from Tri-bimaximal mixing ?

• Different Anzatz ? Tri-maximal mixing, Tri-bimaximal Cabibbo

0 Neutrinos and Flavor Symmetries

Morimitsu Tanimoto

Neutrino mass models make interesting predictions

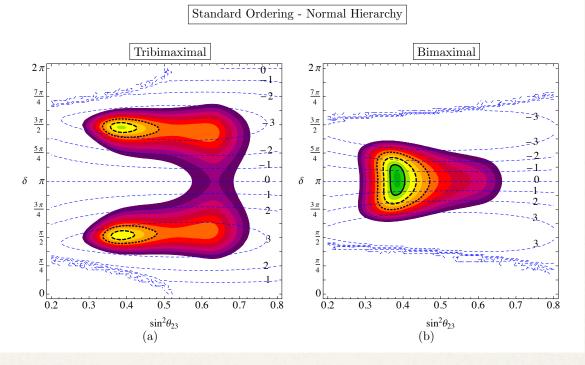

Basic idea is simple:
$$\; \mathcal{U}_{MNSP} \; = \; \mathcal{U}_{CKM}^{\dagger} \; \mathcal{F} \;$$

Datta, Everett, Ramond, hep-ph/0503222 + others

Makes a prediction that so far looks right on: $\theta_{13} = \sin \theta_C \sin \theta_{23} \simeq 9^\circ$

Joseph Lykken

Predicting neutrino CP violation



Joseph Lykken

Predicting neutrino CP violation

$$U_{\rm PMNS} = U_e^{\dagger} U_{\nu} = (\tilde{U}_e)^{\dagger} \Psi \tilde{U}_{\nu} Q_0$$
$$\tilde{U}_e = R_{23}^{-1} (\theta_{23}^e) R_{12}^{-1} (\theta_{12}^e)$$

$$\cos \delta = \frac{\tan \theta_{23}}{3\sin 2\theta_{12}\sin \theta_{13}} \left[1 + \left(3\sin^2 \theta_{12} - 2 \right) \left(1 - \cot^2 \theta_{23} \sin^2 \theta_{13} \right) \right]$$

Marzocca, Petcov, Romanini, Sevilla, arXiv:1302.0423 Petcov, arXiv:1405.6006

Predicting neutrino CP violation

$$V_{\nu} = \begin{pmatrix} 2c/\sqrt{6} & 1/\sqrt{3} & 2s/\sqrt{6} \\ -c/\sqrt{6} + is/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} - ic/\sqrt{2} \\ -c/\sqrt{6} + is/\sqrt{2} & 1/\sqrt{3} & -s/\sqrt{6} + ic/\sqrt{2} \end{pmatrix}$$

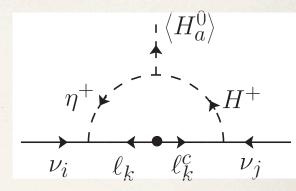
$$c = \cos\theta, \ s = \sin\theta$$

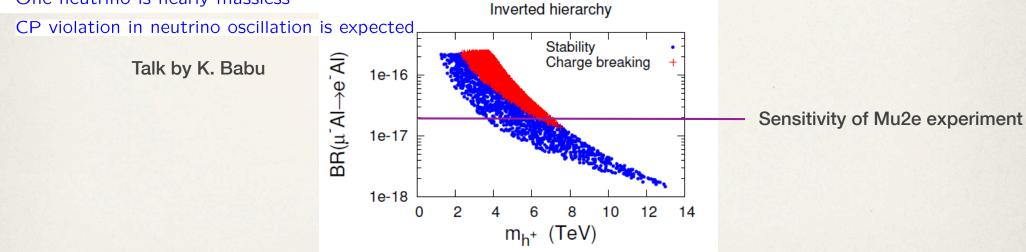
$$in^{2}\theta_{13} = \frac{2}{3}\sin^{2}\theta, \ \sin^{2}\theta_{12} = \frac{1}{2 + \cos 2\theta}, \ \sin^{2}\theta_{23} = \frac{1}{2}$$

$$|\sin\delta_{CP}| = 1, \ \sin\alpha_{21} = \sin\alpha_{31} = 0$$

$$\delta_{CP} = \pm \pi/2$$

The predicton of CP phase depends on the respected Generators of FLASY and CP symmetry. Typically, it is simple value, 0, π , $\pm \pi/2$.


Talk by M. Tanimoto


Joseph Lykken

Predictions for charged lepton flavor violation

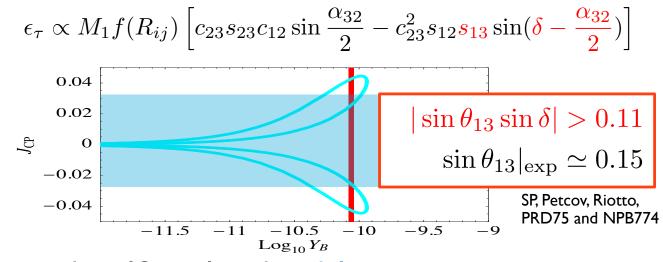
Two-loop neutrino mass generation

Consistent with all neutrino oscillation data Predicts doubly charged Higgs boson with TeV mass One neutrino is nearly massless

SO(10) GUT with extra family symmetry

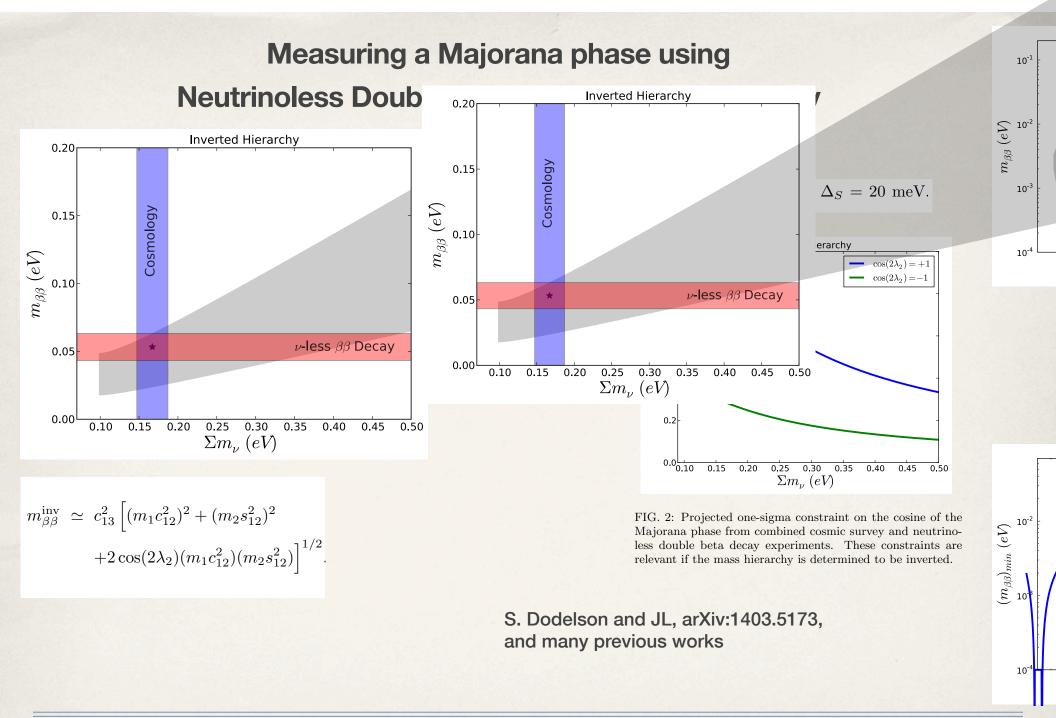
SO(10) x ($D_3 \times U(1)$ family sym.) Yukawa Unification for 3^{rd} Family

		C	urrent Lir	nit	, 10	TeV 1	5 Te V	20 TeV	25 TeV	30 TeV
e EDN	$M \times 10^{28}$	<	10.5 e cn	$i \qquad 0$	$\epsilon \rho_{-}$	0.224	-0.0408	-0.0173	-0.0113	-0.0084
μ ED	$M \times 10^{28}$	Y_{u}	-0.1 ± 0.9) × 10 [€] ef	$\epsilon_m \tilde{\epsilon} \rho_{34}$	1.6 [−] € 6	.23	3.04	1.77	1.20
τEDI	$M \times 10^{28}$	-	0.220 - 0.	45×10^{2}	e cn€ –	2.09 /-	-0.394	-0.185	-0.109	-0.0732
$BR(\mu \to e\gamma) \times 10^{12}$			2.4	/ 0	$\epsilon' - \epsilon$	$\frac{\partial \theta}{\partial \sigma} \sqrt{1}$.23	0.211	0.0937	0.0447
$BR(\tau \to e\gamma) \times 10^{12}$			<u>3</u> .3 × 10 ⁴	-c'			3.9	2.40	1.04	0.502
$BR(\tau \to \mu \gamma) \times 10^8$			4.4		1.	75 0	3.9 .498	0.0837	0.0385	0.0182
$\sin \delta$		4 (s) (s)		$\langle \epsilon \zeta$	-0	.60 -	0.87	-0.27	-0.42	-0.53
			(0	$-\epsilon'$	3 ε ξ				
	10 11 11	Y_e	00 11 11	ϵ'	$3\tilde{\epsilon}$	3ϵ	λ			S. Raby
m16	10 TeV	15 TeV	20 TeV	$-35\epsilon^{T}\xi^{V}\sigma$	<u>30 </u> <u>Fe</u>	σ 1				
χ^2	49.65	31.02	26.58	27.93	29.48	3.0				
M_A	2333	3662	1651	2029	2036ω	$\overline{2}_{2}\epsilon \xi$	ω			
$m_{\tilde{t}_1}$	1681	$252 \Psi_{\nu}$	3975	ϵ 1802	531 $\widetilde{\mathbf{e}}$ ω	$\frac{\frac{3}{2}}{\frac{3}{2}}\epsilon\xi$	0	λ		
$m_{\tilde{b}_1}$	2046	2972	5194	3685σ	$7630\epsilon \sigma$	- 1				
$m_{\tilde{\tau}_1}$	3851	5576	7994	9769	11620		/			
$m_{\tilde{\chi}_1^0}$	133	134	137	149	167					
$m_{\tilde{\chi}_1^+}$	260	263	279	309	351					
	853	850	851	910	1004					


Joseph Lykken

Neutrinos and leptogenesis

Does observing low energy CPV imply a baryon asymmetry?


It has been shown that, thanks to flavour effects, the low energy phases enter directly the baryon asymmetry.

Example in see-saw type I, with NH (m1<< m2 <<m3), M1<M2<M3, M1~5 10^11 GeV:

Large theta I 3 implies that delta can give an important (even dominant) contribution to the baryon asymmetry. Large CPV is needed and a NH spectrum. Talk by S. Pascoli

Joseph Lykken

Neutrino 2014 Conference, Boston, June 7, 2014

Joseph Lykken

Mixing as a window to hidden sectors

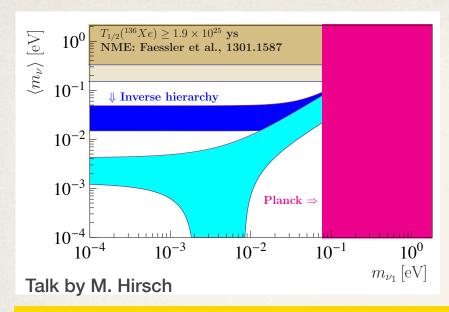
Sterile neutrinos

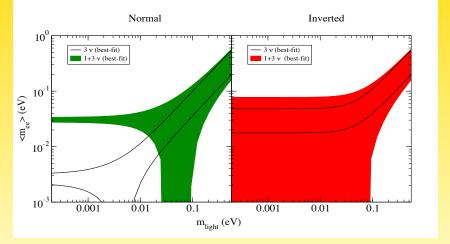
Talk by J. Kopp

Definition

Sterile neutrino = SM singlet fermion

- Very generic extension of the SM
 - can be leftovers of extended gauge multiplets (e.g. GUT multiplets)
- Very useful in phenomenology:
 - Can explain smallness of neutrino mass (seesaw mechanism, $m \sim \text{TeV} \dots M_{\text{Pl}}$)
 - Can explain baryon asymmetry of the Universe (leptogenesis, $m \gg 100 \text{ GeV}$)
 - Can explain dark matter $(m \sim \text{keV})$
 - Can explain various neutrino oscillation anomalies

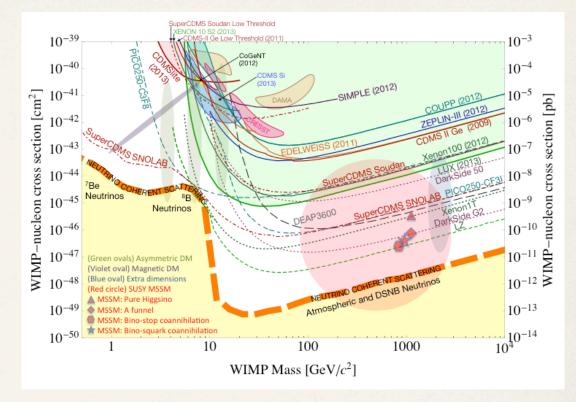

$(m \sim eV)$


Sterile Neutrinos

- eV: SBL Anomalies
- eV: N_{eff} (Cosmology, BBN), *r*-process
- eV: BICEP-2 and Planck
- \ll eV: missing upturn of P_{ee}^{\odot}
- keV: Warm Dark Matter
- TeV: Z-width, NuTeV
- 10¹⁰ GeV: Leptogenesis
- 10¹⁵ GeV: Seesaw Mechanism W. Rodejohann

- Lots of good motivations for various kinds of steriles
- More generally, neutral particles like to mix with other neutrals
- So we will never ever stop looking for steriles

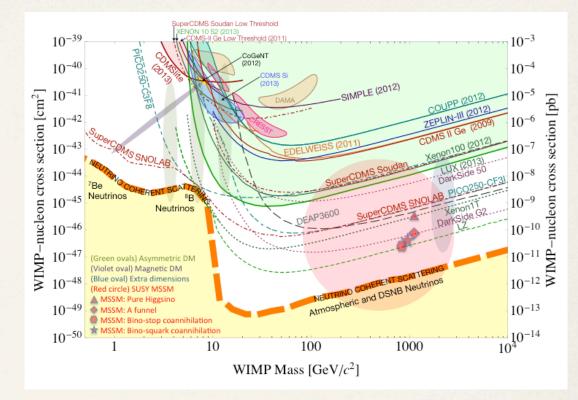
Sterile Neutrinos: the usual plot for double beta decay... ... gets completely turned around! **W. Rodejohann**


Barry, W.R., Zhang, JHEP 1107; Giunti et al., PRD 87; Girardi, Meroni, Petcov, 1308.5802

Sterile neutrinos and neutrinoless double beta decay

- A reminder that the 3-flavor PMNS picture is still just an assumption
- And there could be other nonstandard neutrino interactions

Joseph Lykken


WIMPs getting wimpier

- the WIMP miracle is starting to look like the WIMP fairytale
- theorists may soon have to stop saying "it's a 100 GeV neutralino, stupid"
- good news: already DAMA, CoGeNT, etc have inspired the theory community to start taking a much broader view of the dark sector

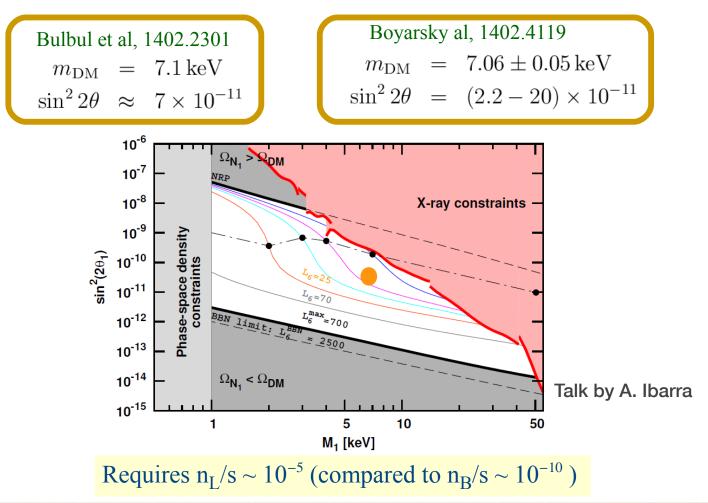
Joseph Lykken

WIMPs getting wimpier

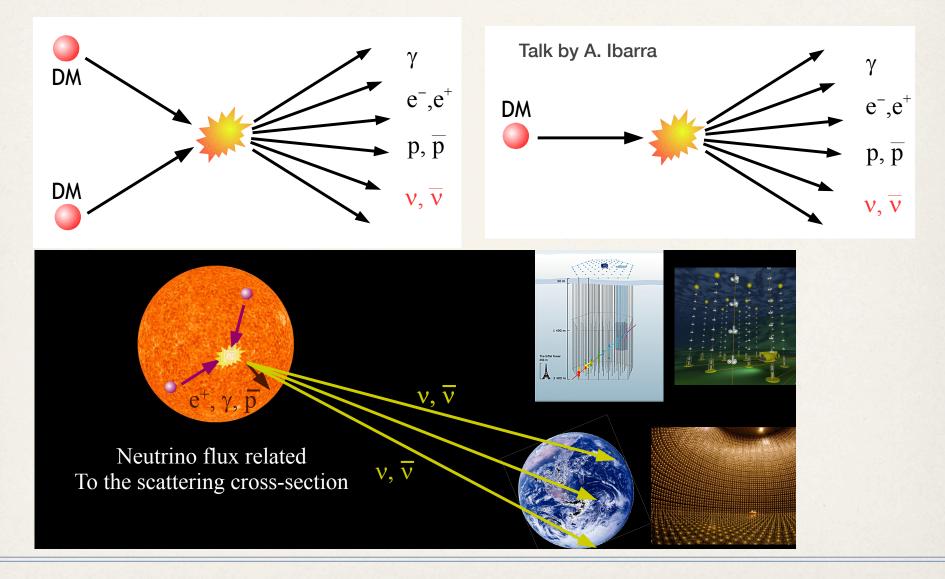
• The "Neutrino Floor" is itself interesting never-before-seen physics: coherent neutrino-nucleus scattering

Talk by G. McLaughlin

Dark matter and neutrinos


- Neutrinos are the dark matter?
- Dark matter annihilates into neutrinos?
- Dark matter decays into neutrinos?

Talk by A. Ibarra


Joseph Lykken

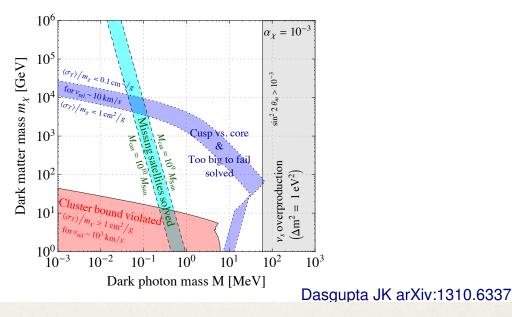
Sterile neutrino dark matter: already discovered?

Sterile neutrinos as dark matter

Neutrinos from dark matter annihilation or decay

Joseph Lykken

~eV sterile neutrinos and dark forces?

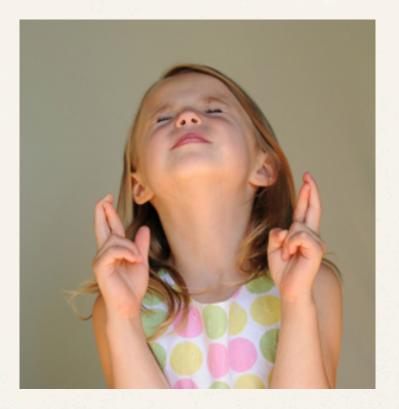

Hidden sector gauge forces and dark matter

Interesting connection to dark matter physics:

The same gauge force that suppressed sterile neutrino production can also solve small scale structure problems:

- Too big to fail problem
- Cusp vs. core problem
- Missing satellites problem

Talk by J. Kopp


Joseph Lykken

Outlook

- Neutrinos connect to almost all of the big questions of particle physics: pursue the oddballs!
- Anyway you cannot escape them: people doing dark matter, colliders, cosmology all are facing neutrinos
- The challenge of understanding the dynamical origins of fermion masses and mixings will require probing higher scales both directly and indirectly
- Whether canonical thinking is correct or not, we have entered a New Age

Not the End

Joseph Lykken