

Karlsruher Institut für Technologie

Monitoring of the high voltage stability in the KATRIN experiment

M. Slezák¹ and M. Erhard² for the KATRIN collaboration

¹Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic and Nuclear Physics Institute ASCR, Řež near Prague, Czech Republic ²KCETA, Karlsruhe Institute of Technology, Karlsruhe, Germany

E-mail: ¹*slezak@ujf.cas.cz*, ²*moritz.erhard@kit.edu*

TECHNICAL CHALLENGE

- ≤ 60 mV @ 18.6 kV (3 ppm)

Monitor spectrometer HV instability

HIGH VOLTAGE MONITORING CONCEPT

HV-dividers K35 & K65

CONVERSION LINE SHAPE

naive expectation: symmetrical Lorentzian function

ANALYSIS OF MOS ELECTRON SPECTRUM

loss-energy part line position = energy of the conversion electrons (not considered)

TRANSMISSION FUNCTION

• analytically: ideal MAC-E filter, point-like source

- series of measurements at the standalone MoS
- > optimization
 - substrate
 - implantation dose
 - implantation energy
 - beam contamination lacksquare
- > reproducibility \succ stability

latest results: K-32 line position stable at the level of 0.3 ppm/month

CONCLUSION

The monitor spectrometer will serve as a powerful and independent tool for continuous monitoring of the high voltage stability in the KATRIN experiment.

REFERENCES

- KATRIN collaboration, *KATRIN design report 2004*, Karlsruhe (2005), http://www.katrin.kit.edu/.
- M. Erhard et al., High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment, accepted in J. Instrum. (2014).
- M. Slezák et al., Electron line shape of the KATRIN monitor spectrometer, J. Instrum. 8, T12002 (2013).

ACKNOWLEDGEMENT

Supported by GAČR under P203/12/1896 and MŠMT ČR under SVV-2014-260097.

