

Neutrino directionality measurement with the Double Chooz experiment

R. Roncin<sup>1</sup> on behalf of the Double Chooz collaboration 1. AstroParticule et Cosmologie (APC), Université Paris Diderot, CNRS UMR 7164

UnivEarthS

Double Chooz is a reactor neutrino oscillation experiment which studies anti- $v_e$  emitted from the two nuclear reactors of the Chooz power plant, in the French Ardennes. It aims to measure the neutrino mixing angle  $\theta_{13}$  thanks to two identical detectors located at different baselines to precisely observe the anti- $v_e$  disappearance. Thanks to its layout, Double Chooz has the ability to test the feasibility of neutrino directionality measurement by liquid scintillator detector.



#### Motivations

Directional information could, in principle, be applied when looking at particular sources such as core-collapse supernovae, when searching for geo-neutrinos, with the possibility to discriminate between crust and mantle, or for nuclear monitoring.

# Anti- $v_{a}$ detection and selection

### **Angular distribution**

**Positron:** Assuming the proton target to be at rest, the angular distribution of the positron w.r.t. the incoming anti- $v_{\rm e}$ is slightly backward peaked [2]. Nevertheless, since the positron will immediately annihilate with an electron of the medium, one can safely assume the positron vertex to be the anti- $v_{e}$  vertex.





**Selection:** Same selection as for the previous  $\theta_{13}$  analysis [1]: prompt and delayed energy range together with space and time coincidences cuts. Muon cut, light noise cut and isolation cut are also applied.

**Neutron:** There is an angular correlation between the anti- $v_e$ and the initial neutron direction [2]:

$$\cos\left(\theta_n\right)_{\max} = \frac{\sqrt{2E_{\bar{\nu}_e}\Delta - (\Delta^2 - m_e^2)}}{E_{\bar{\nu}_e}}$$
 where  $\Delta$  = M<sub>n</sub> - M<sub>n</sub>

Each elastic scattering changes the neutron direction:

$$\langle \cos\left(\theta_n\right) \rangle = \frac{2}{3A}$$

where A is the atomic number of the scattering nucleus.

The neutron directionality is then best preserved for low atomic number nuclei. Since the neutron scatters with a higher probability on H because of larger elastic scattering cross section, the neutron preserves its initial way and by extension the anti- $v_e$  inital direction.



$$\phi = \operatorname{Arctan}\left(\frac{p_y}{p_x}\right) \qquad \theta = \operatorname{Arctan}\left(\frac{p_z}{\sqrt{p_x^2 + p_y^2}}\right)$$

## **Gd-analysis**

With the selection of the 8246 anti- $v_e$  candidates with neutron capture on Gd, we can proceed to the calculation of the  $\phi$  and  $\theta$  angles. The  $\vec{p}$ vector coordinates are obtained from the mean value of the normalised  $p_x$ ,  $p_y$  and  $p_z$  distributions:

 $\vec{p} = (0.0055, 0.0585, -0.0049),$ 

which leads to the determination of the angles:

 $\phi = 84.6^{\circ}$  $\theta = -4.7^{\circ}$ δ = 9.4°

# **H**-analysis

Studies in literature focused on scintillators doped with high neutron capture cross-section elements (such as Gd), which should minimize neutron diffusion.

However, our data has shown, for the first time, that **directionality** studies using neutron capture on H is possible and is potentially interesting for future large-scale neutrino detectors, such as LENA, JUNO or RENO-50 which will use undoped scintillators. H analysis also allows to cross-check the method and the results from Gd analysis.











#### References

[1] Y. Abe et al. "Reactor anti- $v_e$  disappearance in the Double Chooz experiment". Phys.Rev., D86:052008, 2012.

[2] P. Vogel and J.F. Beacom. "Angular distribution of neutron inverse beta decay, anti- $v_{e} + p \rightarrow e^{+} + n^{"}$ . Phys.Rev., D**60**:053003, 1999.

[3] M. Apollonio et al. "Determination of neutrino incoming direction in the CHOOZ experiment and its application to supernova explosion location by scintillator detectors". Phys.Rev., D**61**:012001, 2000.

Double Chooz first results on CBS: The Big Bang Theory SO5E11