

Constraining Large Extra Dimensions with MINOS+

Junting Huang, University of Texas at Austin On behalf of the MINOS+ Collaboration

MINOS/MINOS+ Experiment

- MINOS (Main Injector Neutrino Oscillation Search)
 - precision measurement of neutrino oscillations via ν_{μ} disappearance
 - Near and Far Detectors (ND and FD) are located 1.04 and 735 km downstream of the neutrino production target
- low energy beam setting, peaks around 3 GeV • MINOS+ - started in 2013, continuation of MINOS using medium energy beam optimized for $NO\nu A$ – opportunities to probe new physics at higher energies (4 - 10 GeV)

Near Detector Oscillations

Large Extra Dimension (LED) Model

- proposed by Arkani-Hamed *et al.* for gauge hierarchy problem [1]
- used in ν physics to explain small yet non-vanishing ν masses
 - left-handed neutrinos are confined to 4-dimensional subspace
 - sterile neutrinos can propagate in more than 4 dimensions, Kaluza-Klein (KK) states
- assumption [1, 2]
 - one of the extra dimensions is much larger than the rest
 - perturbations to the standard oscillation scenario
- oscillation amplitude among active neutrino states $\nu_{e, \mu, \tau}$

- significant ND oscillations in LED model for large m_0
 - *left plot*: percentage of energy window where the fraction of ν_{μ} disappearance due to oscillations is larger than 5%
 - right plot: examples of oscillation probability vs. ν energy
- only consider the region of parameter space where ND oscillations are negligible, limit to $m_0 < 30 \text{ meV}$

MINOS Sensitivity

- energy window is set to 1.5 GeV-50 GeV
- fake data is made with no LED assumption
- *left plot*: MINOS sensitivities with and without systematics
- *bottom plot*: effect of individual systematic shift

$$A\left(\nu_{\alpha} \to \nu_{\beta}\right) = \sum_{i,j,k=1}^{3} \sum_{n=0}^{+\infty} U_{\alpha i} U_{\beta k}^{*} W_{ij}^{(0n)*} W_{kj}^{(0n)} e^{i \frac{\left(\lambda_{j}^{(n)}/a\right)^{2} L}{2E}}$$

-U, W are mixing matrices for active and KK states, respectively

- $-\lambda_i^{(n)}/a$ is the mass for eigenstate j of the n^{th} KK mode
- parameters: lightest neutrino mass m_0 , extra dimension size a

- focuses on the disappearance of ν_{μ} in the NuMI beam
- *left plot*: Oscillation probabilities of $\nu_{\mu} \rightarrow \nu_{\mu}$ at FD
- stronger effect for larger a
 - appearance of wiggles, more significant at higher energies
 - shift of the oscillation dip

MINOS Charged Current Analysis

MINOS+ Sensitivity

- upon reaching the designed power of 750 kW, NuMI can deliver $\sim 6 \times 10^{20}$ protons on target (POT) per year
- more high energy events in the 4-10 GeV range will improve sensitivity substantially • *left plot*: MINOS+ sensitivity for various POT

• ν_{μ} is identified by charged current interactions

 $\nu_{\mu} + X \longrightarrow \mu^{-} + X'$

- oscillation parameters are constrained by comparing FD predictions to data
- a beam transfer matrix is used to turn ND observation into FD predictions

Near Detector data

Example Limits from Other Searches

field	# extra	Planck scale $\langle M \rangle \langle T \rangle \langle T \rangle$	extra dim size	source
	and n	$< M_D (I eV)$	$> a \ (\mu m)$	
torsion balance	2	3.6	37	PDG
$\operatorname{astrophysics}$	2	27	0.66	Hanhart $et \ al., \ 2001$
colliders	2	4.17	27.6	ATLAS arXiv:1210.4491

Note: 95% C.L. for the numbers above, M_D is the Planck scale in (4+n)dimensions, $M_P^2 \sim M_D^{2+n} a^n$ where $M_P = 2.4 \times 10^{18}$ GeV so a can be calculated from M_D and n (n may take integers greater than 1) [1]

References

N. Arkani-Hamed, et al., hep-ph/9803315, H. Davoudiasl, et al. hep-ph/0201128 P. A. N. Machado, et al., H. Nunokawa and R. Zukanovich Funchal, arXiv:1101.0003 [2]