Modeling the energy response of the Daya Bay antineutrino detectors

Goal: establish positron energy scale from inverse beta decay (IBD) interactions in a 1-8 MeV energy range

Sören Jetter, IHEP, CAS, Beijing

on behalf of the Daya Bay collaboration

Constrained by gamma data

- Detector targets enclosed by non-scintillating acrylic vessels
- Kinetic energy of positrons near acrylic vessels not fully converted to scintillation light (~13% of all IBD positrons)
- Positron annihilation gammas with longer range can also deposit energy in vessels
- Introduces spectral distortion at around 1 MeV

Extracted from MC simulation

- All data consistent with prediction from gamma+boron constrained energy model
- Best fit model stable within 68% CL when including additional data constraints

Non-linear response from liquid scintillators

- Decrease in light yield due to ionization quenching
- Emission and absorption/ep-emission of Čerenkov light
- Semi-empirical electron response model based on Birks law

- Energy deposited in scintillating volumes E_{dep}

Particle kinetic energy E_{true}

- Energy converted to visible light E_{vis}

- Energy seen by readout electronics E_{REC}

Full IBD positron non-linearity model

- Ionizing positrons assumed to interact with scintillator in same way as electrons, full response computed from electron curve
- 2 annihilation gammas
- 4 curves numerically selected from 1-sigma phase space to parameterize shape uncertainties
- Sub-percent overall uncertainty from non-linear response model
- Reduced dependency on reactor models in oscillation analysis
- Crucial for measurement of reactor spectrum

Validation with additional calibration data

- 53 MeV cutoff in Michel electron spectrum from muon decays
- Continuous beta+gamma spectra from bismuth and thallium decays

Unconstrained 5-parameter fit to $\gamma + ^{12}$B data:

- Absolute energy scale
- Birks constant
- Relative contribution from Čerenkov light
- Size and decay constant of electronics model

Gammas connected to electron scintillator model through MC:

$$K_{\gamma} = \int K_{\gamma}(x) \cdot K_{\gamma}(x) \cdot A(x) \cdot B(x) \cdot C(x)$$

MC gamma propagation

- Monenergetic gamma lines from various sources
- Radioactive calibration sources employed regularly: 14C, 60Co, 203Hg, 137Cs
- Sources employed during special calibration periods: 14C, 60Co, 137Cs, 241Am, 63Ni, 7Li, 13N, 20Ne, 24Na, 40K, 23Na, 22Na, 35Cl, 18F, 18O, 36Cl, 36Ar, 40Ca, 208Tl
- Singles and correlated spectra in regular physics runs: 40K, 208Tl, neutron capture on H, C, Gd

Constrained by gamma data

- Size and decay constant of electronics model
- Reduced dependency on reactor models in oscillation analysis

Energy conversion

- Electronics does not fully capture late secondary PMT hits
- Charge collection efficiency decreases with visible light
- Cannot be easily calibrated out on single channel level
- Use effective exponential model as a function of total visible energy

Energy of primary γ / β

- Continuous spectrum from 12B produced by muon spallation inside scintillating volumes

Constrained by readout electronics model parameters constrained by fit to gamma+boron calibration data

- Ionizing energy scale from inverse beta decay (IBD) interactions in a 1-8 MeV energy range
- 5-parameter fit to $\gamma + ^{12}$B data
- Absolute energy scale
- Birks constant
- Relative contribution from Čerenkov light
- Size and decay constant of electronics model

Gammas connected to electron scintillator model through MC:

$$K_{\gamma} = \int K_{\gamma}(x) \cdot K_{\gamma}(x) \cdot A(x) \cdot B(x) \cdot C(x)$$

Data

- Benchmark experiment using uncalibrated electronics
- Calibration of readout electronics response using flash ADC

Data

- Benchmark experiment using uncalibrated electronics
- Calibration of readout electronics response using flash ADC

Data

- All data consistent with prediction from gamma+boron constrained energy model
- Best fit model stable within 68% CL when including additional data constraints