MEASURING THE ν_e CC INCLUSIVE CROSS-SECTION AT THE GEV-Scale USING ND280, THE T2K NEAR DETECTOR

ν_e CROSS-SECTIONS ARE IMPORTANT

Long baseline oscillation experiments are searching for CP violation. $\nu_\mu \rightarrow \nu_e$ oscillation is a golden channel for this. We need to understand differences between ν_e and ν_μ cross-sections!

EVENT SELECTION

1. Start with highest momentum negative track in active plastic scintillator target, FGD1.
2. Select electrons using TPCs (p/E0) and ECals (shape and charge). Reject 99.9% of ν_μ.
3. Veto e^+e^- conversions to achieve 65% CC ν_e purity.

UNFOLDING

Use Bayesian unfolding to estimate true distribution.

$$F(x) = \frac{\sum_i P_i(x) P_i(y)}{\sum_i P_i(y)}$$

Shearing matrices relate true and reconstructed information. Bremsstrahlung affects momentum reconstruction.

Constrain background using sample of $\gamma \rightarrow e^+e^-$ conversions. Constrain background from out of fiducial volume in full bin.

SYSTEMATICS

Summary

Use covariance matrix method with 10,000 throws. Dominant uncertainties on total cross-section are:
- Flux (12.9%)
- Data statistics (8.7%)
- Detector systematics (8.4%)

Flux

Constrain 5 sources of uncertainty using beam measurements and NA61 hadron production data.

Detector

All ND280 uncertainties are constrained by data. Separate systematics cover:
- FGDs
- TPCs
- ECals
- External interactions

Uncertainty on number of target nucleons is 0.67%.

RESULTS

Selection is not sensitive to low momentum and high angle tracks. Unfolding into these regions depends on the MC model (NEUT). Present two results – with and without unfolding into unseen region. These are the first GEV-scale ν_e cross-section results since Gargamelle!

FUTURE PROSPECTS

Many exciting analyses planned:
- CCQE-enhanced selection to give ν_e CCQE cross-section as a function of E_T
- Running T2K in anti-neutrino mode will give anti-ν_e cross-sections
- $\nu_e\nu_e$ cross-section ratio measurement will benefit from cancelling of many systematic uncertainties.