Atmospheric neutrino flux measurement by Super-Kamiokande
Kimihito OKUMURA and Euan RICHARD (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration
Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo
okumura@icrr.u-tokyo.ac.jp, richard@icrr.u-tokyo.ac.jp

Abstract
Directional-integrated fluxes of atmospheric electron and muon neutrinos are measured in the energy range from sub-GeV to several TeV using Super-Kamiokande detector. Super-Kamiokande is the largest detector in the world which has sensitivity in this energy range, and excellent capabilities to distinguish ν_e and ν_μ by particle identification of out-going leptons. The energy spectrum is reconstructed using unfolding technique with the estimation of the systematic uncertainties, and compared with the existing flux calculation models.

Motivation
- Quantify neutrino flux with current understanding uncertainties and compare existing flux model.
- Give constraint on flux uncertainties due to kaon production.
- Scientific requirements in astroparticle physics (ex. HE astronomical ν).

Event sample
- Three sample (fully-contained, partially-contained, upward-going muons) are utilized.
- FC and UPMU are separated into electron-like and muon-like by particle identification algorithm.
- FC and UPMU are categorized by ν_e sample, but ν_μ flux by UPMU are separately calculated due to different acceptance of solid angle.
- Eliminate neutral current enriched sub-sample to enhance flux sensitivity.

<table>
<thead>
<tr>
<th>ν_e flux</th>
<th>ν_μ flux</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully-contained (FC) electron-like</td>
<td>Fully-contained (FC) muon-like</td>
</tr>
<tr>
<td>Partially-contained (PC)</td>
<td>Upward-going muon (UPMU)</td>
</tr>
<tr>
<td>0.15 – 100 GeV</td>
<td>0.25 GeV – 1 TeV</td>
</tr>
<tr>
<td>1 GeV – 1 TeV</td>
<td>4 π</td>
</tr>
<tr>
<td>4 π</td>
<td></td>
</tr>
</tbody>
</table>

Flux reconstruction
Bayes unfolding:
We adopt near-side Bayes unfolding [5] (implemented in RooUnfold) to convert from observable to neutrino energy spectrum.

Response function:
and provide for each Super-K period (SK-I-4) respectively.

Bias check:
Reproducibility of energy spectrum is checked by bias study using Monte-Carlo samples.

Conclusions and discussions
- Atmospheric neutrino flux is measured from sub-GeV to 10 TeV for ν_e and ν_μ, respectively, by Super-Kamiokande. Bayes unfolding method is utilized and energy spectrum reproducibility is checked by bias check. Statistical and systematic uncertainties are estimated by toy calculation, and about 20% uncertainties are derived. Calculated fluxes agree with existing flux models within systematic uncertainties.
- As shown in Figure 2, measurement of wider energy range with km3 size detector would lead better understanding of atmospheric neutrino spectrum, and also could constraint uncertainty due to kaon production by combined analysis.

Reference