Monitoring of the high voltage stability in the KATRIN experiment

M. Slezák1 and M. Erhard2 for the KATRIN collaboration

1Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic
2KCEA, Karlsruhe Institute of Technology, Karlsruhe, Germany
E-mail: 1slezak@ujf.cas.cz, 2moritz.erhard@kit.edu

TECHNICAL CHALLENGE
sensitivity of 200 meV/c² (90% CL) on the effective mass of ν_e from tritium β-decay
- high voltage (HV) stability within ≤ 60 mV @ 18.6 kV (3 ppm)
- continuous monitoring for a 2-month run

HIGH VOLTAGE MONITORING CONCEPT
Monitor spectrometer conversion electrons with constant energy
HV instability shift of measured energy
Direct HV measurement
high precision HV-dividers K35 & K65 and precise voltmeters

GENERAL FEATURES
- integrating spectrometer
- high energy resolution 0.93 eV @ 18.6 keV
- ultra-high vacuum 10⁻¹⁰ mbar
- 3D positioning of source and detector

CONVERSION ELECTRON SOURCE
- K-32 electrons of ^{83m}Kr 800 eV below tritium β-spectrum endpoint
- ^{83}Rb implanted into solid substrate (Pt, HOPG) @ ≤ 30 keV

DETECTOR
- central – circular Si PIN-diode, area 1.5 cm²
- for counting electrons
- auxiliary – PIN-photo diodes
- for alignment
- cooled to ≈ -45 °C with LN₂

CONVERSION LINE SHAPE
- naive expectation: symmetrical Lorentzian function
- observed: numerical convolution

ANALYSIS OF MoS ELECTRON SPECTRUM
- solid-state effects (Gaussian)
- loss-energy part (not considered)
- line position = energy of the conversion electrons
- line position uncertainty from this fit: 21 meV ± 1.2 ppm
- meas. time: ≈ 25 min
- # of fit parameters: 5

TRANSMISSION FUNCTION
- analytically:
 - ideal MAC-E filter, point-like source
 - in reality:
 - source with finite dimensions
 - inhomogeneous activity distribution
 - non-trivial electron flux tube over the analyzing plane

EXPERIMENTAL PROOF OF K-32 ENERGY STABILITY
- series of measurements at the standalone MoS
 - optimization
 - substrate
 - implantation dose
 - implantation energy
 - beam contamination
 - reproducibility
 - stability
- latest results: K-32 line position stable at the level of 0.3 ppm/month

CONCLUSION
The monitor spectrometer will serve as a powerful and independent tool for continuous monitoring of the high voltage stability in the KATRIN experiment.

REFERENCES
- KATRIN collaboration, KATRIN design report 2004, Karlsruhe (2005), http://www.katrin.kit.edu
- M. Erhard et al., High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment, accepted in J. Instrum. (2014).

ACKNOWLEDGEMENT
Supported by GAČR under P203/12/1896 and MoMT ČR under SVV-2014-260097.