Determination of the detection systematics in the Double Chooz experiment
Antoine Collin(1), José I. Crespo Anadón(2), Julia Hase(3), Guang Yang(3)
on behalf of the Double Chooz Collaboration

THE DOUBLE CHOOU EXPERIMENT
- Reactor Dβ disappearance is directly related to Dβ.
- Neutrino interactions detected through inverse beta decay, Dβ in Angström.
- Coincidence signal in DChoo leaved liquid scintillator n capture time -300 ps.
- Delayed signal n capture on Ge D1-1500 ns.

DETECTION SYSTEMATICS IN DOUBLE CHOOU
- The inverse beta decay (IBD) events constitute the sought signal.
- The detection rates are estimated so that the efficiency of IBD detection is high while the background contamination remains at a low level.

VEGETS and background neutron cuts are added to this nominal selection.
As a consequence, the contributions to the 0.63% detection systematics consist of the MC uncertainties:
- Monte Carlo normalization factors
- The MC spectrum analysis of the predicted Dβ-1 due to recombination.
 - A Monte Carlo (MC)-MC normalization factor in combination with an uncertainty ensures the detection dependence accuracy of the MC set data.
- The normalization is defined as the ratio of data of MC to MC detection efficiency.
- The predicted detection efficiency contains three contributions:
 - a selection cut dependent efficiency ϵ_{sel}
 - an inherent efficiency $\epsilon_{intrinsic}$
 - a neutrino decay neutron to be captured on Cd
 - A neutron mobility related detection uncertainty.
- The combined total MC normalization factor is then defined as the product of the selection dependent and the inherent Ge capture fraction MC normalization:

NEUTRON SOURCES
- Inverse beta decay (IBD) neutrons
 - Antineutrinos are regarded as a neutron source through IBD.
 - Homogeneous distribution in the detector.
 - Standard neutrino physical oscillation signal.
 - Selection similar to the one for oscillation analysis (inlets of the reactor core).
 - Only non-neutrino decay events are background.
- Veto cuts: energy > 1 MeV, timelag < 500 ns,
- Absolute background rejection is estimated using an off line selection.

CF delayed fission neutrons
- Point-like fission source with ~ 13 neutrons per second.
- Deployed at positions along the target symmetry axis.
- Calibration campaigns in the middle of the detector, using a proton beam to achieve high statistics.
- Fission event signature.
 - Prompt neutron cut (30-500 keV).
 - Delayed neutron capture (30-350 keV) with δT ~ 2 ns and maximum: δT ~ 4 ns.
 - A background-based delayed selection.
- Correlated background reduction by applying a delayed multiplicity of n3.

MUC spallation neutrons
- Event selection in the time range 50 < Δt < 150 ps after a muon with ≥ 30 MeV.
- Background reduction.
 - Muon event selection (Δt > 75 ns to next muon).
 - Acquired background selection by off line event selection.
- Fission cut ($E > 0.5$ MeV).

VOLUME-WIDE DETECTION SYSTEMATIC UNCERTAINTY
- The volume-wide MC normalization factor ensures that the cut dependent detection efficiency in the MC reproduces the one in data.
- The normalization factor is determined as the ratio of data and MC predictions only in the efficiency matrix.
- The efficiencies are computed for the whole target volume to include the reduction in their values when approaching the borders.
- The efficiency consists of:
 - Interaction energy passing the delayed energy, correlation time and correlation distance cuts defined for the oscillation analysis.
 - Chromatic events passing the cuts on the same variable.
- All the cuts are evaluated similarly in an inclusive way to account for any possible correlation between them.

IBD neutron volume-wise uncertainty estimation
- The $Dβ$-1 selection is very clean on background.
- The cut dependent efficiency is therefore estimated with wide cuts in the denominator.

Cf fission neutron volume-wise uncertainty estimation
- The systematic uncertainty mainly contributes:
 - Selection cut dependent efficiency ϵ_{sel}
 - Variation of the cut of the detection vertex.
 - Variation of the $\epsilon_{intrinsic}$ due to energy and delayed multiplicity cut.
 - The evaluation of the cut dependent volume-wise MC normalization:

CASCADE-FRACTION SYSTEMATIC UNCERTAINTY
- The $
u$-CC interaction is defined as the ratio of calculated to data.
- It is estimated via the ratio of events counted in the ν-CC and the ν-CC energy spectrum:

MUC spallation neutron-Gd fraction crosscheck
- High neutron energetic for ν is ~ 325 MeV.
- 1.2% systematic uncertainty.
- Compute a ϵ_{MC} comparison of the spallation neutron-Gd fraction to the antineutrino MCν fraction.
- The results of ϵ_{MC} and ϵ_{exp} are in agreement within $\sim 0.6%$.

SUMMARY
- The summary of all delayed detection MC normalization factors and their uncertainties is given by the table on the next page.
- The cut dependent and volume-wise normalized factor was measured by two independent analyses. The ν-CC fraction and the IBD CF neutron fraction is in agreement with 1.
- The cross-measurements using IBD and CF result in a good agreement to data as MC expectation.
- The cut dependent normalization uncertainty was estimated using the combined IBD and CF result.
- The Gd fraction normalization was found to be the dominant contribution to the total MC normalization central value and uncertainty of the delayed detection.
- Cross-check measurements using IBD and spallation neutrons could confirm the Gd fraction normalization result.
- The neutron migration systematic uncertainty has been evaluated by MC, MC comparison.
- Since the Gfission as well as the neutron migration MC normalization and uncertainty are created by a MC simulation mismatch, these contributions will be strongly reduced in a two detector measurement of ϵ_{MC}.

(a) Max-Planck-Institut für Kernphysik (Heidelberg, Germany), (b) CIEMAT (Madrid, Spain), (c) Argonne National Lab/ Illinois Institute of Technology (USA)