Electromagnetic Design for the Rear Section of the KATRIN Experiment

The KATRIN Experiment
Karlsruhe Tritium Neutrino Experiment
- direct, model-independent measurement of the neutrino mass scale by investigating the kinematics of tritium β-decay
- combination of ultra-luminous gaseous molecular tritium source with high-energy resolution spectrometer

sensitivity on m_ν: 200 meV/c² (90% C.L.)

Rear Section
a calibration and monitoring system for KATRIN featuring a versatile photoelectron source

Requirements
- angular range: up to largest transmissible pitch angle
- angular spread $\leq 4^\circ$ at full angle
- energy range: up to 25 keV
- energy spread: 0.2 eV
- highly stable rate: $\Delta R/R < 10^{-3}$ over 3 min at $R \leq 10^5$ s⁻¹

Implementation
- UV-light based photo emission of a gold surface
- electrons guided adiabatically by magnetic field
- kinetic energy controlled by post acceleration electrodes
- electric dipoles break electron trap by $E \times B$ drift
- magnetic dipoles steering electron beam

precise electromagnetic design simulations required, consisting of field calculation, optimization and electron tracking

Results
- electron gun angle of 10°, 1500 simulated electrons with gaussian energy distribution: mean 0.15 eV, sigma 0.075 eV
- mechanical fiber positioning determined by simulations searching for the optimal starting position

implemented rear section 3D model in Kassiopeia3.0 (KATRIN specific simulation package)

implemented rear section 3D model in Kassiopeia3.0 (KATRIN specific simulation package)

$E \times B$ drift to remove trapped electrons

electron gun angle of 10°, 1500 simulated electrons with gaussian energy distribution: mean 0.15 eV, sigma 0.075 eV
mechanical fiber positioning determined by simulations searching for the optimal starting position

electron gun angles up to 10° sufficient for covering full angular range
small beam spot size is elementary to reduce angular spread

200 μm optical fibers