A Relative Rate and Shape Measurement of the Neutrino Oscillation at the Daya Bay Experiment
Henoch Wong (UC Berkeley), on behalf of the Daya Bay Collaboration

Smallest mixing angle in lepton sector
- Neutrino mass/flavor states related by 3x3 unitary PMNS matrix.

Neutrino Mixing Matrix
- Precision via relative measurement
 • Relative far vs. near measurement limits uncertainty

Oscillation Parameters
- Anti-neutrinos interact in the 0.1% Gadolinium-doped liquid scintillator inside the detector via the inverse beta decay (IBD) reaction:
 \[\nu_e + p \rightarrow e^- + n \]
- The neutron is captured by gadolinium ~30µs later, providing a clear experimental signature.
- The detected positron energy carries important information about the original anti-neutrino energy.
- The oscillation parameters \(\theta_{13} \) and \(\Delta m^2_{31} \) can be obtained by comparing the positron spectrum between Near and Far detectors.

Inverse Beta Decay candidate selection
1. Prompt positron: \(0.7 \text{ MeV} < E_p < 12 \text{ MeV} \)
2. Delayed neutron: \(6.0 \text{ MeV} < E_n < 12.0 \text{ MeV} \)
3. Neutron capture time: \(1 \mu s < t < 200 \mu s \)
4. Muon veto: Reject up to 1s of events after a cosmic muon
5. Multiplicity cut: \(N_{\text{tracks}} \) \(\leq 10 \)

A relative rate and shape measurement
- The philosophy is to apply the effect of oscillation to the spectrum measured by the Near detectors to match the spectrum distortion observed by the Far detectors.
- Such an oscillation analysis would reduce the uncertainty due to the imperfect modeling of the reactor anti-neutrino flux.
- Shape analysis is equivalent to 37 independent "rate-only" analysis for each energy bin.

The most precise measurement of \(\theta_{13} \)
- Result based on entire (217 days) six-detector data and 404 days eight-detector data.
- Precision measurement of \(\Delta m^2_{31} \), becoming comparable to MINOS: \(|\Delta m^2_{31}| = 2.4 \times 10^{-3} \text{ eV}^2 \)

Daya Bay’s 2014 Results
- Sin^2 2\theta_{13} = 0.804^{+0.005}_{-0.005}
- |\Delta m^2_{ee}| = 2.44^{+0.10}_{-0.11} \times 10^{-3} \text{ eV}^2