I. Automated Calibration Units (ACUs)
- deploys calibration sources along 3 vertical axes
- each unit has 3 switchable source holders
 - 10 Hz 68Ge gamma source (2 x 0.511 MeV γ's)
 - 100 Hz 60Co gamma source (1.173 + 1.332 MeV γ's) + 0.5 Hz 241Am/13C neutron source (3.5 MeV n without γ)
- LED diffuser ball
- position accuracy is < 7 mm

II. PMT Gain Calibration
- PMTs are operated at a gain of 10^7
- converts ADC value to photoelectron (p.e.) by fitting single photoelectron distribution
- calibrates regularly to compensate variations due to environment and electronics
 - low intensity LED (weekly)
 - PMT dark noise (rolling calibration, updated every ~6 hours)

III. Energy Scale Calibration
- converts total charge (p.e.) to detected energy (MeV)
- approximates with linear relation between light collection and detected energy
- sets a global energy scale for each detector

Two independent energy reconstruction algorithms are calibrated with different approaches:
- 60Co gamma source
 - two gammas with total energy of 2.5 MeV
 - weekly ACU deployment at detector center
 - uniformity correction with off-center 60Co ACU scans
- spallation neutrons
 - neutrons produced by cosmic rays, and captured by Gd with energy peak at ~8 MeV
 - in-situ data calibration with uniform distribution

IV. Summer 2012 Special Calibrations
- Manual Calibration System (MCS)
 - deployed 60Co + 239Pu/13C sources inside target volume
 - studied uniformity of the detector
- temporary sources in ACUs
 - 137Cs, 54Mn, 40K, 241Am/9Be, 239Pu/13C
 - studied energy response at several energies
 - constrained spill-in / spill-out effect by neutron sources

V. Summary
The Daya Bay experiment has achieved < 0.2% relative energy scale variation for all antineutrino detectors over the whole energy range.

Please also checkout the poster "Modeling the energy response of the Daya Bay antineutrino detectors" by Sören Jetter.