The MAJORANA DEMONSTRATOR Neutrinoless Double-Beta Decay Experiment

Vincente Guiseppe on behalf of the MAJORANA Collaboration

The MAJORANA DEMONSTRATOR

The MAJORANA DEMONSTRATOR is a neutrinoless double-beta decay experiment using germanium as source and detector. The goals for the DEMONSTRATOR are:

1. Demonstrate background levels low enough to justify building a tonne-scale experiment
2. Establish the feasibility of constructing & fielding modular arrays of Ge detectors
3. Search for additional physics beyond the Standard Model, such as solar neutrinos and dark matter

- Background Goal in the 0.9ββ peak region of interest (4 keV at 2 MHz)
- 3 σ events/ROI/h (after analysis cuts)
- Seeks to 1 count/ROI/h for a tonne experiment
- 40 kg of Ge detectors
- 30 kg of 86% enriched 76Ge crystals
- 20 kg of pure Ge
- Detector Technology: P-type, point-contact.
- Two independent cryostats
- Ultra-clean, electroformed Cu
- 25 kg of detectors per cryostat
- Naturally scalable
- Compact Shield
- Low-background passive Cu and Pb shield with active muon veto
- Located underground at the 4800-foot level of the Sanford Underground Research Facility in Lead, SD

Status:
- Commissioning prototype module with 3 strings of natural Ge
- Producing 12 kg of enriched geranium crystals for the DEMONSTRATOR
- Module 1 in operation by end of 2014 with 7 strings containing 76Ge
- Module 2 in operation by end of 2015 with 7 strings of 76Ge and 86Ge

76Ge and Double-Beta Decay

Discovery of the neutrinoless double-beta decay provides:

1. Neutrino is its own antiparticle
2. Lepton number violating process
3. Effective Majorana mass

\[\Gamma_{\beta\beta} = G_{\text{eff}} |M_{\beta\beta}|^2 (m_{\beta\beta})^2 \]

- Ge is the source & detector
- Maximize source to total mass ratio
- Well-understood technologies
- Excellent energy resolution 0.016% at 2 MeV, 4-kV ROI
- Advantages for improving signal to background
- Existing, well-characterized large Ge arrays
- Demonstrated ability to reject 7.4% to 80%
- Favorable nuclear matrix element
- Slow 2ββ rate \(T_{1/2} = 1.4 \times 10^{21} \) yr
- Powerful background rejection technologies
- Granularity, timing, pulse shape discrimination
- Proof Ge 0ββ searches have highly competitive lifetime limits

Approach

Ge crystal

String

Array inside cryostat

Detector mounts

Shield

Detectors

- Ultra-low background rate requires a pulse shape analysis (PSA) rejection of multi-site gamma events
- P-type Point-Contact (PPC) detector
 - No deep hole; small point-like central contact
 - Simple, cost-effective, low intrinsic radiactivity
 - Locally weighting potential gives excellent rejection of events with multiple interaction sites
 - Low capacitance (~1 pF) gives superb resolution at low energies

Material Purity and Backgrounds

Background predicted on material assay:
- The detector
- Ge crystal zone refined and pulled into a crystal
- Provides purification
- Limit surface exposure to prevent cosmic activation
- Deep underground operation
- Detector mounts
- Ultra-pure plastic and electroformed Cu
- Low mass design
- Custom cable connectors and front-end boards
- Cryostat and inner shielding
- Underground electroformed Cu

Simulated background spectra before and after analysis cuts

Underground Facilities

Cu Electroforming

Underground Cu electroforming laboratory produces all of the ultra-pure inner Cu.

Cu Machining

Underground clean room machine shop already adjacent to a chemical cleaning lab and detector hall.

Detector and Module Construction

Detector units and strings built inside a glovebox with a radon-reduced, dry N₂ environment

The MAJORANA Collaboration

 PERFORMANCE LOCATION

The MAJORANA Collaboration

Performance Location

- Sanford Underground Research Facility, Lead, SD
- University of Wisconsin, Madison, WI
- University of Tennessee, Knoxville, TN
- Texas A&M University, College Station, TX
- University of Alabama, Tuscaloosa, AL
- Texas Tech University, Lubbock, TX
- University of Texas at Austin, TX
- Illinois Institute of Technology, Chicago, IL
- Oak Ridge National Laboratory, Oak Ridge, TN
- Brookhaven National Laboratory, Upton, NY
- Los Alamos National Laboratory, Los Alamos, NM
- University of Washington, Seattle, WA
- University of Alberta, Edmonton, AB
- The University of Hong Kong, Hong Kong, China
- Shanghai Jiaotong University, Shanghai, China

We acknowledge support from the Office of Nuclear Physics in the DOE Office of Science, the Particle Astrophysics Program of the National Science Foundation, and the Russian Foundation for Basic Research. We acknowledge the support of the Sanford Underground Research Facility administration and staff.