Measuring Neutrino Interactions with MiniBooNE

Outline:

- overview
- experiment
 - v beam, detector, analysis
- v reactions and rates
- overview of MiniBooNE measurements
- antineutrino running

Neutrino Interactions with MiniBooNE

- The main goal of MiniBooNE (MB) is a $\nu_{\mu} \,{\to}\, \nu_{_{e}}\, \text{search}$
- High rates and good particle ID also allow accurate measurements of neutrino interactions
- Important to understand these interactions, both for the physics and to extract oscillation parameters.
- Especially at E_v~1 GeV

Neutrino interactions and oscillations

- For example, in recent results on $v_{\mu} \rightarrow v_{e}$ search from MiniBooNE... (arXiv:0704.1500v2 [hep-ex], to be published in PRL)
- - $\nu_{_{\mu}}$ CCQE: provides cross section for $\nu_{_{e}}$ CCQE, constrains $\nu_{_{\mu}}$ flux,

background for oscillations

- $v_{\mu} NC\pi^{0}$: measured in data, background for oscillations
- v_{μ} CC π^{+} : provides understanding of Δ production and therefore

input to Δ -> Ny background for oscillations

- and understand/predict energy, angle, etc distributions.

Neutrino interactions and oscillations

- Need to understand/model the underlying physics (for v interactions on Carbon). E.g.:

 v_{μ} CCQE: nucleon momentum distributions and form factors v_{μ} NC π^{0} : Δ form factors, resonant/coherent contributions v_{μ} CC π^{+} : " " " " " "

- In addition, this physics just plain interesting....!

The MiniBooNE experiment

<u>MiniBooNE v beam</u>

- proton beam from 8 GeV
 booster accel (at Fermilab)
- Delivered to a ~ 1.7 λ Be target
- within a magnetic horn pulsing with beam spill @ 170 kA
- 4 $\times 10^{\mbox{\tiny 12}}$ protons per 1.6 μs pulse delivered at up to 5 Hz.
- (5.58±0.12)x10²⁰ POT collected in neutrino mode, 2003-2005

(POT="protons-on-target")

R. Tayloe, Indiana U. NuInt07

6

MiniBooNE v beam: flux from pions

 kinematics of pions are well-covered by HARP (80.8% of flux with HARP coverage) - pion production in p,Be at 8.9 GeV/c from HARP experiment at CERN (arXiv:hep-ex/0702024v1)

MiniBooNE v beam: flux from pions

- pion production in p,Be at 8GeV/c from HARP

Data are fit to a "Sanford-Wang" parameterization.

- points: data
- red line: fit
- blue lines: error band

- BNL910 p,BE data at p=6.4,12.3 GeV/c used also in fits

- similar proceedure for kaons

(HARP data, arXiv:hep-ex/0702024v1)

MiniBooNE beam: total v flux

GEANT4 simulation use to predict flux at detector, includes:

- pi, K production data
- proton interactions (primary, 2ndary)
- horn/decay pipe geometry
- mean energy ~ 800MeV
- 99% of flux from <2.5GeV
- 98% of CCQE interactions from v_{μ} due to π decays
- $-v_{e}^{\prime}/v_{\mu} = 0.5\%$
- -6% \overline{v} contamination
- ~15% error on flux normalization
 energy-correlated errors calculated

The MiniBooNE experiment

MiniBooNE detector

- 541 meters from target
- 12 meter diameter sphere
- 800 tons mineral oil (CH_2)
- 3 m overburden
- includes 35 cm "veto region"
- viewed by 1280 8" PMTs(10% coverage) + 240 veto
- Simulated with a GEANT3 Monte Carlo program

- 541 meters from target
- 12 meter diameter sphere
- 800 tons mineral oil (CH_2)
- 3 m overburden
- includes 35 cm "veto region"
- viewed by 1280 8" PMTs(10% coverage) + 240 veto
- Simulated with a GEANT3 Monte Carlo program

- 541 meters from target
- 12 meter diameter sphere
- 800 tons mineral oil (CH_2)
- 3 m overburden
- includes 35 cm "veto region"
- viewed by 1280 8" PMTs(10% coverage) + 240 veto
- Simulated with a GEANT3 Monte Carlo program

MiniBooNE Detector

- 541 meters from target
- 12 meter diameter sphere
- 800 tons mineral oil (CH_2)
- 3 m overburden
- includes 35 cm "veto region"
- viewed by 1280 8" PMTs
 (10% coverage) + 240 veto
- Modeled with a GEANT3 simulation program

PMT

R. Tayloe, Indiana U. NuInt07 14

Detector: light propagation and simulation

- detailed "optical model" of detector has been developed...
- ...guided by internal/external measurements
- Attenuation length: >20 m @ 400 nm
- both prompt (Cerenkov), late light (scintillation, fluorescence) modeled
- detected prompt:late light is ~3:1 for β ~1

15

R. Tayloe, Indiana U. NuInt07

Detector: trigger and "subevents"

- main "beam" trigger:
 - readout all hits (above low threshold) in 19.2 μs window
 - around ~1.6 µs beam spill
- essentially no trigger bias
- allows decays of muon and pions to be detected with high efficiency
- "subevents" are then
 split up within this window
- then subevent structure may be used as a powerful cut to select event types
- e.g. CCπ⁺ typically has 3 subevents

R. Tayloe, Indiana U. NuInt07 16

Detector: event time structure

- 1.6 μs beam spill within 19.2 μs trigger window
- v events easily seen with simple cuts
- low duty-ratio => low beam-unrelated background

R. Tayloe, Indiana U. NuInt07 17

<u>v</u> Events in MiniBooNE

- v interaction products create
 (directed, prompt) Cerenkov light and
 (isotropic, delayed) scintillation light
- pattern and timing of the light collected by PMTs allows for identification of events (and position, direction, energy measurement)

muon energy/angle resolution ~7%/5°
 at 300 MeV

R. Tayloe, Indiana U. NuInt07

<u>MiniBooNE v Event Rates</u>

- v events currently "on-tape" :
- predicted by ν interaction MC*
- with fiducial radius of 500cm
- before cuts

-		-
v channel	events	
all channels	810k	
CC quasielastic	340k	
NC elastic	150k	
$CC \pi^+$	180k	
$CC \pi^0$	30k	"CC" =
NC π^0	48k	charged current
NC π ^{+/-}	27k	neutral current

These (record-sized!) event samples allow cross section measurements with excellent statistical precision.

*MB v interaction MC: v3 NUANCE code with:

- Smith-Moniz Fermi Gas
- (non-dipole) vector form factors from Bradford et al
- Rein-Sehgal resonant/coherent 1π
- Bodek-Yang DIS

Charged-Current Quasielastic Scattering (CCQE)

- highest-rate reaction channel in MiniBooNE
- for oscillations: provides check of the $\nu_{_{\mu}}$ flux, measurement of $\nu_{_{e}}$ CCQE
- Need to understand this process on nuclear target (C)
- existing data consists of small samples and (at low E) on D_2
- Teppei Katori, Indiana U., Session 5, Thurs.
 - extraction of model parameters from Q² distribution (paper soon!)
- Ultimate goals for CCQE:
 - differential cross section
 - investigation/implementation
 of modern models

ν_{μ} CCQE cross section world data

23

R. Tayloe, Indiana U. NuInt07

Charged-Current Quasielastic Scattering (CCQE)

previous MB result,
 from NuInt05

Charged-Current Quasielastic Scattering (CCQE)

- new MB result, will be shown tomorrow

<u>Charged-Current $1\pi^+$ Production (CC π^+)</u>

- 2nd highest-rate reaction channel in MiniBooNE
- coherent CC π^+ is interesting subject, K2K sets limit (hep-ex/0506008)
- existing data is sparse
- Bonnie Fleming, Yale U. Session 6, Friday
 - kinematic distributions and comparison with model
- Ultimate goals:
 - $CC\pi^+/CCQE$ ratio
 - $M_A(1\pi)$ extraction
 - differential cross section
 - coherent contribution

$v_{_{\rm II}}$ CC π^{+} world data

R. Tayloe, Indiana U. NuInt07

Neutral-Current Elastic scattering (NC elastic)

- NC probe of the nucleus/nucleon
- unlike CC channels, sensitive to isoscalar component of nucleon (strange quarks)
- Chris Cox, Indiana U.

Session 5, Thursday

- (preliminary) differential cross section
- Ultimate goals:
 - differential cross section
 - NCelastic/CCQE ratio

R. Tayloe, Indiana U. NuInt07 27

<u>Neutral-Current π^0 Production (NC π^0)</u>

- (very) important oscillation background
- both resonant and coherent channels contribute (coherent predicted to be ~5-20%)
- coherent dominated by axial current, therefore, not constrained with e-scattering data
- very little existing v data
- Jon Link, Virgina Tech U., Session 6, Friday
 - coherent fraction
 - piO rate measurement
- Ultimate goals:
 - differential cross section
 - $CC\pi^{0}$ analysis (underway)

v_{μ} coherent NC π^0 world data

R. Tayloe, Indiana U. NuInt07 28

Antineutrino Scattering with MiniBooNE

- interesting physics,
- an important test of \boldsymbol{v} results,
- a (limited) $\overline{\nu}_{\!_{\mu}} \rightarrow \overline{\nu}_{\!_{e}}$ search

- no existing \overline{v} data below E_v = 1GeV

- MiniBooNE started $\overline{\nu}$ run in Jan, '06
 - 1.5E20 POT collected
 - problem with absorber plates at 25m in 50m decay tunnel
 - fixed! and back running in April '07,
 0.3E20POT obtained since then
 - continue running to obtain total of (2-2.5)E20POT

MiniBooNE Antineutrino Run

- flux/event distributions with absorber plates in understood
- all data may be used for analyses

Antineutrino Scattering with MiniBooNE

 $\overline{\mathbf{v}}$ events expected:

- from 2E20 "protons-on-target" (POT)
- with fiducial radius of 500cm
- before cuts
- v event (wrong-sign) contribution
 not included

v channel	events	
all channels	54k	
CC quasielastic	24k	"CC" =
NC elastic	10k	charged currer
$CC \pi$	8.9k	neutral current
$CC \pi^0$	1.7k	
NC π^0	4.9k	
NC π ^{+/-}	1.8k	

1.8E20 POT collected so far...

Antineutrino Scattering with MiniBooNE

Topics investigated:

- $\mathbf{M}_{\!\scriptscriptstyle A}$ and differential cross sections in $\overline{\nu}\,$ quasielastic data
- joint analysis of v/ $\overline{v}\,$ QE data to measure interference term
- coherent π^0 fraction and π^0 differential cross section in $\overline{\nu}$ data
- measurement of wrong-sign neutrino contamination (from QE muon angle, CC π^+ in $\overline{\nu}$ data, and muon lifetimes)
- Van Nguyen, Columbia U. Poster Session, Friday
 - NC π^0 distributions
- Teppei Katori, Session 5, Thursday
 - \overline{v} CCQE events
- Bonnie Fleming, Session 6, Friday
 - \overline{v} (+ "wrong-sign) $CC\pi^+$ events

<u>Summary</u>

- MiniBooNE has collected a large v -scattering data set (~800k events) at E_v ~1GeV region, will enable increased understanding of v interactions
- Many new results reported over next days, dont miss them!
- Ultimate goals included model-independent cross section extraction, necessary for development and testing of more accurate, sophisticated models of these processes.
- MiniBooNE antineutrino running has commenced. First look at results here!
- The many contributions from MB collaborators for this talk are gratefully acknowledged!

